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Remote Sensing Image Classification
Supervised Learning

Annotated samples are available

Supervised optimization of the classifier parameters

How to obtain reliable semantic maps from unseen data?

Buildings Blocks Roads
Light Train Vegetation Trees
Bare Soil Soil Tower
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Spectral-Spatial Classifiers
The Value of Spatial Information

Spectral classifiers: can’t deal with high spatial resolution images

Exploit the spatial autocorrelation of data

Improving the understanding of remote sensing images

Data set - true color image
VHR panchromatic (0.6m)

Multispectral (R,G,B and NIR)

Buildings Blocks Roads
Light Train Vegetation Trees
Bare Soil Soil Tower

spectral features spectral + spatial features
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Spatial Autocorrelation
Remote Sensing Data

Spectral dependence degree between a pixel and its neighbors

Measure of statistical separability between spatial objects

1 Intrinsic property → types of land cover classes

2 Spatial resolution → pixel’s size

3 Pre-processing → feature engineering, CNNs, etc.
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Figure 1.3: An illustration

1.4.1 Tree-Based Image Representations

It has been generally recognized that tree structures can be very powerful tool for
organizing data in optimal space, while supporting the operations efficiently. In the
context of remote sensing, they are a promising solution for dealing with complex and
massive amounts of data (multi- and hyperspectral images, multitemporal, multires-
olution, multisource and heterogeneous, noisy, imprecise and incomplete data) and
combine various information types (spectral signature, shape and geometry, texture,
etc.). Furthermore, these structures are often considered richer in descriptive ability
since they can be exploited for the decomposition of images into primitives or funda-
mental elements, which can be more easily interpreted with respect to the pixels. The
tree encoding is a very efficient approach for revealing structural information and sev-
eral works have been proposed for addressing many applications, such as classification,
object detection, segmentation and change detection.
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Accuracy Assessment
Sampling Step

Influenced by:
The model of the classifier

The sampling scheme

Groundtruth split into three disjoint sets: training, validation and test

Sampler determines amount and distribution of samples across the scene

It can significantly affect the test phase
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Motivation
What this Work is About

Practice of training and validating new classifiers within a single image

Groundtruth split with random sampling

It was a natural choice for spectral classifier

Could already violate the independence assumption (bias train and test sets)

Inevitable spatial autocorrelation between adjacent pixels

Direct neighboring or nearby pixels present in both train and test sets

Spatial closeness: information from one set may leak into the respective other
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Motivation
What this Work is not About

Existing datasets have a number of limitations
Lack of image variations and diversity

Saturation of accuracy

Open-source Hyperspectral datasets used for DL papers, John Ball, 2017 [1]
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Motivation
What this Work is not About

Transfer learning, domain adaptation and active learning

Recent advancement in EO benchmark data creation

Dataset Image per class Scene classes Total images Spatial resolution (m) Image sizes Year Refernce

UC Merced Land-Use 100 21 2100 0.3 256x256 2010 [2]

WHU-RS19 50 19 1005 up to 0.5 600x600 2012 [3]

RSSCN7 400 7 2800 – 400x400 2015 [4]

SAT-6 – 6 405000 1 28x28 2015 [5]

Brazilian Coffee Scene 1438 2 2876 – 64x64 2016 [6]

SIRI-WHU 200 12 2400 2 200x200 2016 [7]

NWPU-RESISC45 700 45 31500 30 to 0.2 256x256 2016 [8]

AID 300 30 10000 0.6 600x600 2017 [9]

EuroSAT 2500 10 27000 10 64x64 2017 [10]

RSI-CB128 36000 – 45 3 128x128 2017 [11]

RSI-CB256 24000 – 35 0.3 256x256 2017 [11]

Yet not enough (e.g., Imagenet with 14,197,122 images)

Data variation between train and application phase remains in place
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Aims of the Approach

Capture the full spectral variation of the image

Reduces overlap between train and test samples due to spatial processing

1 Extract larger contiguous regions using the class labels

2 Distribute them disjointly between the train and test set

A bias, if present at all, would then only be relevant at the outer edges of
such a region, but not for the inner pixels

More objective and accurate evaluation

August 21, 2018 g.cavallaro@fz-juelich.de Slide 12



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

DBSCAN
Density-Based Spatial Clustering for Applications with Noise

Can be used for computing n-connected components in an image

They can have gaps (ε-sizes), filtered by (minPoints-area)

Able to detect arbitrarily shaped clusters

Don’t need to know the number of clusters a priori

Noise

Core

ε

Border

DDR

DC

DR

minPoints = 4

Cluster core: point that contains within a
spatial search radius ε at least a certain
number of neighboring points minPoints
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Extraction of Contiguous Regions

Cluster the coordinates of pixels of each of the individual classes

Each cluster corresponds to one of the identified region of that class

DBSCAN performs n-connected-component-labeling
ε = {1,

√
2} for 4- and 8-connectivity, respectively

minPoints serves as threshold for potential gaps
i.e. If minPoints < num. of connected components+1 → increasingly larger gaps
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Regions Distribution Between the Train and Test Set
Not Efficient Approaches

Regions could be randomly assigned to either one of the two sets

However, num. of regions << num. of pixels within each region

The likelihood of selecting an imbalanced train set rises
The set might not contain patterns present in the test set

Each region could be subdivided into two disjoint parts
E.g., the “top” and “bottom”

However, the number of biased pixels increases along the partition boundary
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Regions Distribution Between the Train and Test Set
Proposed Approach

metric function assigns to all regions of a class a partially ordered ranking

It indicates their assignment priority to the train or test set

Regions are added to a set until the pixels class split fraction is reached

The region causing an over pixels assignment is split into two sub-regions

Random sampling Cluster sampling (area) Cluster sampling (StdDev)
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Dataset
University of Houston - 2013 GRSS data fusion contest

Hyperspectral image (144 spectral bands with 2.5m spatial resolution)

Thematic classes:

Healthy Grass (1251) Trees (1244) Residential (1268) Highway (1227) Parking Lot 2 (469)

Stressed Grass (1254) Soil (1242) Commercial (1244) Railway (1235) Tennis Court (428)

Synthetic grass (697) Water (325) Road (1252) Parking Lot 1 (1233) Running Track (660)
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Dataset
Indian Pines - AVIRIS - NASA (1992)

Hyperspectral image (220 spectral bands with 20m spatial resolution)

Thematic classes:

BareSoil (57) Corn-MinTill (1049) Hay (1128) Soybeans-NS (1110) Soybeans-NaTill (2157) Buildings (17195)

Soybeans-CleanTill (5074) Soybeans-NaTill-EW (2533) Hay (pre.) (2185) Corn-MinTill-EW (5629) Concrete/Asphalt (69) Corn-MinTill-NS (8862)

Hay-Alfalfa (2258) Soybeans-CleanTill (pre.) (2726) Soybeans-NaTill-NS (929) Corn (17783) Corn-Natill (4381) Lake (224)

Soybeans-CleanTill-EW (11802) Soybeans-NaTill-Drilled (8731) Corn (presumed) (158) Corn-Natill-EW (1206) NotCropped (1940) Soybeans-CleanTill-NS (10387)

Swampy Area (583) Corn-EW (514) Corn-Natill-NS (5685) Oats (1742) Soybeans-CleanTill-Drilled (2242) River (3110)

Corn-NS (2356) Fescue (114) Oats (pre.) (335) Soybeans-CleanTill-Weedy (543) Trees (pre.) (580) Corn-CleanTill (12404)

Grass (1147) Orchard (39) Soybeans-MinTill (15118) Wheat (4979) Corn-CleanTill-EW (26486) Grass/Trees (2331)

Pasture (10386) Soybeans-Drilled (2667) Woods (63562) Corn-CleanTill-NS (39678) Grass/Pasture-mowed (19) Pond (102)

Soybeans-MinTill (1832) Unknown (144) Corn-CleanTill-NS-Irrigated (800) Grass/Pasture (73) Soybeans (9391) Soybeans-MinTill-Drilled (8098)

Corn-CleanTill-NS (pre.) (1728) Grass-runway (37) Soybeans (pre.) (894) Soybeans-MinTill-NS (4953)
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Experimental Setup (1)
Feature Engineering Steps Combined with Support Vector Machine

Data dimensionality reduction
Kernel Principal Component Analysis (KPCA)

Spatial information enhancement
Extended Self-Dual Attribute Profiles (ESDAPs)

Feature extraction
Nonparametric Weighted Feature Extraction (NWFE)

KPCA ESDAP NWFE Train SVM90%

GroundTruthTrain set Test set

SVM classifierModel99%

Data set

Cross validation
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Experimental Setup (2)
3D Convolutional Neural Network

Feature Representation / Value
Conv. Layer Filters 48, 32, 32
Conv. Layer Filter size (3, 3, 5), (3, 3, 5), (3, 3, 5)
Pooling size (1, 1, 3), (1, 1, 3), (1, 1, 2)
Dense Layer Neurons 128, 128
Activation Functions rectified linear unit (ReLU)
Loss Function mean-squared error (MSE)
Optimization stochastic gradient descent (SGD)
Training Epochs 600
Batch Size 50
Learning Rate 1.0
Learning Rate Decay 5× 10−6
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Experimental Results
University of Houston

Sampling
method

Feature Engineering with SVM 3DCNN

MetricTraining set size (%)

10 30 60 90 10 30 60 90

Random

97.68 (0.09) 99.62 (0.03) 99.85 (0.04) 99.90 (0.07) 96.03 (0.42) 98.97 (0.13) 99.51 (0.23) 99.75 (0.14) OA

97.73 (0.05) 99.63 (0.02) 99.87 (0.04) 99.96 (0.06) 95.26 (0.49) 98.86 (0.12) 99.40 (0.37) 99.73 (0.24) AA

97.54 (0.06) 99.59 (0.02) 99.84 (0.04) 99.89 (0.08) 95.70 (0.46) 98.89 (0.14) 99.47 (0.25) 99.73 (0.16) Kappa

97.76 (0.14) 99.61 (0.03) 99.83 (0.04) 99.91 (0.07) 95.60 (0.45) 98.93 (0.13) 98.20 (2.75) 99.74 (0.19) F1

Size
ε =
√

2
minPoints = 9

50.15 69.49 79.19 82.89 53.90 (2.86) 75.50 (0.66) 83.87 (1.33) 87.06 (0.51) OA

50.15 69.50 79.21 82.94 59.39 (3.88) 76.59 (0.59) 82.95 (1.13) 86.55 (1.57) AA

46.22 67.07 77.52 81.48 50.41 (3.07) 73.50 (0.71) 82.55 (1.44) 86.01 (0.56) Kappa

54.24 70.94 78.95 80.67 53.84 (4.05) 77.18 (1.03) 82.48 (1.96) 85.60 (1.39) F1

StdDev
ε =
√

2
minPoints = 9

63.47 66.62 74.01 80.36 58.50 (0.71) 58.37 (0.69) 70.59 (0.47) 79.36 (2.07) OA

63.48 66.62 74.02 80.41 60.15 (2.36) 62.38 (2.33) 72.24 (0.27) 80.95 (2.09) AA

60.59 63.97 71.90 78.77 55.19 (0.79) 55.19 (0.76) 68.26 (0.49) 77.68 (2.24) Kappa

64.50 67.29 77.38 77.11 55.71 (3.33) 58.74 (2.28) 72.38 (0.50) 79.39 (1.91) F1

Random sampling (SVM,3DCNN): average and stddev of five generated training sets

Cluster sampling (SVM): single run (deterministic sampler)

Cluster sampling (3DCNN): average and stddev of five random seeds used for the weights initialization
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Experimental Results
Indian Pines

Sampling
method

Feature Engineering with SVM 3DCNN

MetricTraining set size (%)

10 30 60 90 10 30 60 90

Random

77.83 (0.12) 84.84 (0.09) 87.78 (0.03) 89.10 (0.06) 90.32 (0.89) 96.59 (0.15) 97.89 (0.22) 98.34 (0.45) OA

77.83 (0.12) 84.84 (0.09) 87.78 (0.03) 89.10 (0.06) nan nan nan nan AA

75.98 (0.13) 83.61 (0.10) 86.79 (0.03) 88.22 (0.06) 89.54 (0.97) 96.32 (0.16) 97.73 (0.24) 98.21 (0.49) Kappa

66.75 (0.50) 76.14 (0.35) 79.91 (0.32) 81.63 (0.05) 70.60 (2.55) 82.39 (1.83) 81.08 (2.33) 81.98 (2.60) F1

Size
ε =
√

2
minPoints = 9

16.76 17.36 23.77 47.29 28.93 (1.47) 27.92 (1.19) 20.15 (1.65) 33.15 (1.24) OA

16.76 17.36 23.77 47.29 19.11 (0.00) 16.16 (0.00) 15.26 (0.00) nan AA

8.33 8.40 14.71 42.75 24.64 (1.36) 23.01 (1.14) 15.59 (1.53) 28.37 (1.22) Kappa

nan nan nan nan 14.55 (0.99) 14.47 (1.14) 13.14 (1.83) 18.22 (1.52) F1

StdDev
ε =
√

2
minPoints = 9

17.57 17.05 23.45 43.61 18.38 (0.78) 31.09 (0.47) 32.15 (1.23) 40.56 (1.65) OA

17.57 17.05 23.45 43.61 11.79 (0.00) 17.14 (0.00) 21.77 (1.49) 31.37 (0.33) AA

6.47 9.86 15.67 39.18 14.01 (0.74) 26.15 (0.41) 27.45 (1.19) 36.68 (1.79) Kappa

nan nan nan nan 8.61 (0.60) 13.47 (0.94) 18.56 (0.95) 29.41 (2.81) F1

Random sampling (SVM,3DCNN): average and stddev of five generated training sets

Cluster sampling (SVM): single run (deterministic sampler)

Cluster sampling (3DCNN): average and stddev of five random seeds used for the weights initialization
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Random Sampling Evaluation
Independence Assumption Violated

The pattern recognition problem degrades to an almost memorization issue

Classifying the same pixel class in the test set based on the previously seen
similar instance in the training data is very likely

Inherent to a variety of machine learning classifiers (SVMs, CNNs, etc.)

(3DCNN: insufficient offset between patches)
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Overlap between train and test data
3DCNN - Indian Pines Dataset
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Conclusions

Random sampling introduces systematic bias

Issue for spectral-spatial classifiers (e.g., processing pipelines, CNNs, etc.)

More dependence between train and test samples leads to higher accuracies

Proposed controlled sampling approach based on DBSCAN clustering algorithm

Easy definition of contiguous regions and train-test-set assignment prioritization

Accuracies on unseen test data closer to an actual out-of-sample performance
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The End

Thank you for your attention.

Code available at:
https://github.com/Markus-Goetz/cluster-sampling

This research has been supported in part by the SIMDAS project and in part by the DEEP-EST project, which
have received funding from the European Union’s Horizon 2020 research and innovation programme under the

Grant Agreements No. 763558 and No. 754304, respectively.
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