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ABSTRACT

Recently, the TanDEM-X DEM has been produced as a global
DEM with unprecedented relative accuracy. One important
step of the chain of global DEM generation is to mosaic mul-
tiple raw DEM tiles by DEM fusion methods to reach the
best possible target accuracy. Currently, Weighted Averaging
(WA) is used as a fast and simple method for TanDEM-X raw
DEM fusion in which the weights are computed from height
error maps delivered from the Interferometric TanDEM-X
Processor (ITP). In this paper, we investigate the efficiency
of variational models such as TV-L1 and Huber model for the
TanDEM-X raw DEM fusion task in comparison to WA. The
results illustrate that using variational models can improve
the quality of DEM fusion outputs especially for areas with
high-frequency contents and more complex morphological
features like urban areas. Using variational models could
improve the DEM quality by up to about 1m.

Index Terms— Data fusion, L1 norm total variation,
Weight map, Huber model, TanDEM-X DEM

1. INTRODUCTION

A new global Digital Elevation Model (DEM) covering al-
most the whole planet was realized by the TanDEM-X DEM
mission. The bistatic SAR data takes are input to a SAR in-
terferometric processing chain to produce a DEM with rel-
ative height accuracy better than 2m for slopes lower than
20% and finer than 4 m for remaining steeper slopes [1]. The
main part of the DEM generation procedure is implemented
in the Integrated TanDEM-X Processor (ITP) which leads to
primary raw DEMs for each bistatic acquisition. After some
pre-processing such as phase unwrapping, and DEM tile cali-
bration with ground control points such as those derived from
ICESat data, DEM scenes are fused together within the DEM
Mosaicking Processor (DMP)[2].

A common method for doing the DEM fusion in DMP is
weighted averaging in which the heights are summed respec-
tive to their weights derived from a Height Error Map (HEM).
In addition, some logic for clustering consistent heights and
upgrading weights regarding the influences of other signifi-
cant factors such as Height of Ambiguity (HoA), Phase Un-
wrapping (PU) methodology and pixel locations relative to

the border of the DEM scene is considered to finally reach
the target relative accuracy and minimize PU errors remain-
ing from primary steps [3]. While the weighted averaging
approach can realize the predefined goals in DMP for global
DEM generation it does not perform optimally in difficult ter-
rains with complex morphology such as urban areas which
contains many high-frequency contents such as edges. Af-
ter WA-based DEM fusion, visualization shows that outlines
of buildings are not perfectly sharp and still some amount of
existing noise spoils the footprints of buildings. Therefore,
we will investigate the application of more sophisticated ap-
proaches to efficiently preserve edges and outlines of build-
ings while removing noise. For this purpose, two variational
models, namely L1 norm total variation (TV-L1) and Huber
model are implemented.

2. METHODS FOR TANDEM-X RAW DEM FUSION

Different methods have been implemented for fusing DEMs
with different properties [4], [5],[6] as an application of data
fusion in remote sensing [7] . In this paper, three approaches
are carried out for TanDEM-X raw DEM fusion. The descrip-
tion of each model will be explained in the following. Before
implementing the fusion process, two DEMs are aligned to
each other. This can easily be performed by DEM coreg-
istration approaches such as least square matching, iterative
closest point or manually decreasing of their translational and
rotational discrepancies. For stability reasons, in addition, the
height data should be normalized to [0 1] interval:

hnk (x, y) =
hk(x, y)− hmin
hmax − hmin

(1)

where hk(x, y) > 0 is the elevation of the study DEM with
index of k in the location (x, y), hmax > 0 and hmin > 0
(hmin < hmax) are lowest and highest elevations in whole
study DEMs. The output gives the normalized height in the
considered location.

2.1. Weighted Averaging

The most popular, very fast and low computational cost
method for DEM fusion is weighted averaging which is im-
plemented as follows [3]:



f =

k∑
i=1

wi � hi (2)

where hi are primary DEMs with normalized heights achieved
from relation 1 and wi are corresponding weight maps.

The main critical issue for using weighted averaging for
DEM fusion is to apply appropriate weights that are fairly rep-
resentative of expected height errors in the source DEMs. For
TanDEM-X DEM fusion, generally, these weights are deliv-
ered as Height Error Maps (HEMs) from ITP. For each height
of the TanDEM-X DEM, the corresponding HEM value can
be estimated by

σj = Hamb
σφ,j
2π

(3)

where Hamb is the height of ambiguity and σφ,j is the in-
terferometric phase error that is estimated from the interfero-
metric coherence with geometrical consideration. Then, from
these values, the respective weights can be calculated for each
pixel location by:

wj =

1
σ2
j∑N

j=1
1
σ2
j

(4)

2.2. Variational Models

The basic variational model for image denoising and data fu-
sion is a quadratic model in which L2 norm is used for both
regularization and data terms. However the quadratic regu-
larization term causes over-smoothing for edges. Therefore,
using the L1 norm instead was proposed by Rudin, Osher,
and Fatemi which is called ROF model correspondingly [8].
Since the ROF model still uses the L2 norm for the data term,
it does not provide robustness against outliers when applied
to DEM fusion. As a solution, the L1 norm can be substituted
for L2 norm. The TV-L1 model consists of two terms, namely
the data fidelity and the penalty term [9]:

min
f

{ k∑
i=1

‖f − hi‖1 + γ‖∇f‖1
}

(5)

where hk are noisy input DEMs and f is the desired DEM
should be achieved by minimizing the functional energy
above. The penalty term is formed based on the gradients of
the newly estimated DEM to preserve the edges at the end.
The regularization parameter γ, trades off between penalty
and fidelity terms.

While the main advantage of TV-L1 is its robustness
against the strong outliers as well as preserving the edges, it
suffers from the staircasing effect, a phenomenon that creates
artificial discontinuities in the final output and particularly
affects high resolution DEM fusion [10]. Moreover, the L1

norm is not the necessarily the best choice for all data fusion

and denoising cases. As an alternative, the Huber regular-
ization model is proposed to rectify the drawbacks of TV-L1

model. It applies the Huber norm instead of L1 norm in both
fidelity and penalty terms [11]:

‖x‖η =

{
|x|2
2η if |x|≤ η.
|x|−η2 if |x|≥ η.

(6)

where η is a parameter that determines a threshold between
the L1 and L2 norm in the model. Then, Huber model can be
defined as follows:

min
f

{ k∑
i=1

∑
Ω

‖f − hi‖α + γ
∑
Ω

‖∇f‖β
}

(7)

where both data and penalty terms are constituted based on
the thresholds α and β. Since, both TV-L1 and the Huber
model are convex, we use the primal-dual strategy to mini-
mize the energy functional of variational models and conse-
quently find the optimum fused DEM.

3. EXPERIMENT AND RESULTS

3.1. Study areas

As an experiment of using variational model for TanDEM-
X raw DEM fusion over urban areas, we selected study ar-
eas from two nominal existing tiles (I) and (II) and one non-
official product (III) produced by ITP over Munich city in
Germany. The specifications of all raw DEMs are shown in
Tab. 1.

The main property that discriminates the three tiles is that
the height of ambiguity is larger for tile (III) in comparison to
(I) and (II), which means data takes of tiles (I) and (II) were
acquired using a longer baseline. The DEM with the larger
HoA will be helpful for areas where PU errors are dominant.

TanDEM-X raws DEMs
Tile index I II III
Center incidence angle 38.25◦ 37.03◦ 38.33 ◦

Equator crossing direction Ascending Ascending Ascending
Look direction Right Right Right
Polarization HH HH HH
Height of ambiguity 45.81m 53.21 m 72.02
Total number of looks 22 22 22
Pixel spacing 0.2 arcsec 0.2 arcsec 0.2 arcsec
HEM mean 1.33 m 1.58 2.58

Table 1. Properties of the TanDEM-X raw DEM tiles for Mu-
nich area.

After resampling and coregistration, the raw DEMs are
fused by the different approaches explained in Section 2.

In this study two experiments will be carried to evalu-
ate the performance of variational models in comparison to



(a) Study area 1 (b) Study area 2

Fig. 1. Display of study areas 1 and 2.

weighted averaging. In the first experiment, two patches from
official tiles (I) and (II) are selected to investigate how the
variational models perform in normal urban areas and in the
second experiment, the patches are from tile (I) and (III) with
considering an area has lots of inconsistent heights due to PU
errors. Fig. 1 displays the study areas 1 and 2 selected in this
study for the first and second experiments respectively.

3.2. DEM Fusion Results

Tab. 2 represents qualities of fused DEMs with different mea-
sures for the first study area (1). Fig. 2 displays the primary
DEM patches and fusion results in a 3D manner. The accura-
cies have been measured with respect to a reference LiDAR
DSM that is derived from a LiDAR point cloud with a density
of one point per square meters after resampling into a grid
with a pixel size of 6 m. The results of the first investiga-
tion (area 1) illustrate using variational models can obtain a
more accurate DEM in comparison to simple weighted aver-
aging. The DEM fusion results of the second experiment are
collected in Tab. 3. Unfortunately for this area, the reference
data was not available and thus, the performance of the fusion
algorithm is just evaluated based on the PU error reduction
according to instructions described in [3].

4. DISCUSSION

The results of TanDEM-X DEM fusion confirm the better
performance of variational models. Using TV-L1 model for
TanDEM-X raw DEM fusion could finally improve the qual-
ity of raw DEMs (I) and (II) up to 0.70 and 1 m (in term of
RMSE value) respectively in the first study patch (area 1). In
addition, revealing outlines of buildings in final fused DEM
using weighted averaging is not as great as variational ap-
proaches that clarifies the superiority of variational models

(a) TanDEM-X (tile I) (b) TanDEM-X (tile II)

(c) Weighted averaging (d) Huber model

(e) TV-L1 model (f) LiDAR

Fig. 2. 3D display of initial TanDEM-X data and results of
DEM fusions using different methods in the industrial area.

over weighted averaging in urban areas. The quantitative re-
sults identify there are no significant differences between the
performance of TV-L1 and the Huber model while the DEMs
produced by TV-L1 have slightly better accuracy. However,
an inspection of the 3D view of the Huber-DEM visualized in
Fig. 2 implies that the Huber model tends to create a smoother
output especially on the edges that are not very beneficial
for DEMs with lower resolution. In the second investigation
(area 2), it can be observed in areas influenced with PU er-
rors choosing the optimal norm is essential to reach optimal
results from DEM fusion. For this, two tiles, one with small
HoA and and another with larger HoA should be employed to
reduce the influence of phase unwrapping errors.

5. CONCLUSION

In this paper, we proposed to apply variational models (TV-
L1 and Huber models) for TanDEM-X raw DEM fusion at
the phase of DEM mosaicking instead of weighted averag-
ing. The results illustrated that variational models are more



DEM Mean RMSE MAE NMAD STD
TanDEM-X (I) 0.711 4.395 3.082 2.373 4.338
TanDEM-X (II) 0.711 4.638 3.273 3.005 4.583

Fused DEM
WA 0.766 4.157 2.932 2.244 4.086
TV-L1 0.690 3.666 2.691 2.027 3.600
Huber 0.711 3.742 2.842 2.400 3.674

Table 2. Height accuracy (in meter) of the TanDEM-X data before and after DEM fusion in the study area 1.

TanDEM-X DEM No. of PU errors Max discrepancy Min discrepancy
Relative difference: (III-I) 762 79.201 -46.671

Fused DEM
WA 73 51.771 -30.832
TV-L1 177 54.985 -27.936
Huber 25 39.935 -22.322

Table 3. The performance of variational models and weighted averaging for reducing effects of PU errors in the problematic
area (2).

efficient than weighted averaging for TanDEM-X raw DEM
fusion especially over urban areas.

In the future, we will investigate on more datasets with
different properties such as different HoAs as well as areas se-
lected from different land types for instance residential areas,
and inner city and also tiles produced from completely dif-
ferent baseline configuration, ascending and descending data
takes in morphologically complex terrains and also fusion of
TanDEM-X DEMs produced by non-local InSAR filtering.
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