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ABSTRACT

Feature extraction from infrared (IR) images remains a
challenging task. Learning based methods that can work
on raw imagery/patches have therefore assumed significance.
We propose a novel multi-task extension of the widely used
sparse-representation-classification (SRC) method in both
single and multi-view set-ups. That is, the test sample could
be a single IR image or images from different views. When
expanded in terms of a training dictionary, the coefficient
matrix in a multi-view scenario admits a sparse structure
that is not easily captured by traditional sparsity-inducing
measures such as the l0-row pseudo norm. To that end, we
employ collaborative spike and slab priors on the coefficient
matrix, which can capture fairly general sparse structures.
Our work involves joint parameter and sparse coefficient
estimation (JPCEM) which alleviates the need to handpick
prior parameters before classification. The experimental
merits of JPCEM are substantiated through comparisons with
other state-of-art methods on a challenging mid-wave IR
image (MWIR) ATR database made available by the US
Army Night Vision and Electronic Sensors Directorate.

1. INTRODUCTION

With developments of IR technology, ATR for IR images
has attracted significant attention. Early research in ATR
using IR images was focused on feature extraction from
images produced through different IR sensors or the fusion
of imagery [1, 2]. Unlike feature extraction from optical
images, the choice of robust discriminative features from IR
imagery remains an open problem. This is typically due to
low resolution, high noise and unique physical characteristics
of IR images. Nevertheless, lots of traditional algorithms for
classification have been applied to IR images. Methods such
as Bayesian techniques, Support Vector Machines (SVMs),
Principal Component Analysis (PCA) etc. with state-of-art
extracted features like Bag Of Words (BOW) and Histogram
of Oriented Gradients (HOG) fall in this category [3–7].

In many cases it is possible to obtain IR images
including information from different views of the same target
particularly in military applications. These scenarios present
the problem of multi-view ATR and recently methods have
been proposed to classify such type of images effectively.
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Among them, the sparse representation classification (SRC)
[8] based methods display remarkable performances by
accurately recovering sparse coefficients corresponding to
each class. Multi-view sparsity based classification involves
a linear model where a test matrix is expanded in terms of
a training dictionary of images multiplied by a coefficient
matrix. The coefficient matrix is sparse but its exact structure
varies by the scenario. For example, when classifying
histopathological images, the row-sparsity structure is natural
to maintain correspondence across different color channels
[9]. However, in many other cases, sparse coefficient matrices
exhibit block sparsity and dynamic sparsity [10], which
capture more general notions of sparsity that are applicable in
a wide variety of applications [11]. Example sparse structures
of a coefficient matrix are illustrated in Fig.1.

We address multi-view ATR via a sparsity based approach
where sparse structure on the coefficient matrices is enforced
by collaborative spike and slab priors. These priors have
tunable parameters which can control the likelihood of each
coefficient in the matrix to be active (or zero), hence allowing
for more generality in the sparse structure [12]. The merits
of using such priors in classification have been demonstrated
recently [13]. One key challenge in practical application to
classification problems is that the sparsity inducing parameter
must be handpicked before the coefficient matrix is estimated.
This has been done by using domain knowledge in problems
such as face recognition [13] and SONAR ATR [14]. We
overcome this challenge by developing a new Joint Prior and
Coefficient Estimation Method (JPCEM). Since JPCEM is
also a sparsity based method, it inherits the advantages of
SRC such as automatic feature discovery and resilience to
noise. Experiments are carried out on a well-known database
[15] of Mid-wave Infrared (MWIR) images collected by the
US Army Night Vision and Electronic Sensors Directorate
(NVESD). JPCEM is evaluated against state of the art multi-
view ATR/classification methods and shown to compare
favorably, particularly when training imagery is limited.

2. SPARSE REPRESENTATION CLASSIFICATION
VIA BAYESIAN FRAMEWORK

2.1. Single-view Classification
Sparse representation based classification (SRC) has become
popular recently. Suppose that there are C different classes,
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Fig. 1: Examples structures of the sparse coefficient matrix X.

the basic relaxed form of SRC can be expressed as below:
x∗ = arg min

x
‖x‖1 s.t. ‖y −Dx‖2 < ε (1)

c∗ = arg min
c∈{1,...,C}

‖y −Dδc(x
∗)‖2 (2)

where y ∈ Rd is formed by vectorized test image, D =
[D1, . . . ,Dc, . . . ,DC ] ∈ Rd×K is the dictionary formed by
all the vectorized training images, where Dc ∈ Rd×kc is
the class specific dictionary, and x ∈ RK is the recovered
sparse coefficient vector. δc(x∗) is a new vector whose only
nonzero entries are the entries in x∗ associated with the
cth class. According to [16], the minimization problem in
Eq.(1) is equivalent to maximizing probability of observing
the sparse vector x given y assuming x has an i.i.d Laplacian
distribution in a Bayesian framework. As a result, the
equation (1) can also be expressed as below:

x∗ = arg max
x

f(x) s.t. ‖y −Dx‖2 < ε (3)

where f(x) represents a sparsity inducing probabilistic prior
on the coefficient vector x.

In this Bayesian set-up, we propose to work with spike
and slab priors, which are known to enable fully general
sparse structures [17]:
y|D,x, γγγ, σ2 ∼ N (Dx, σ2I) (4)

x|γγγ, λ, σ2 ∼
N∏
i=1

γiN (0, σ2λ−1) + (1− γi)I(xi = 0)

γγγ|κκκ ∼
N∏
i=1

Bernoulli(κi)

where N (·) represents the normal distribution, γγγ is the
indicator variable for vector x, i.e., γi = 0 if xi = 0,
otherwise γi = 1, and κi is the probability of γi being 1.
Maximum-a-posteriori (MAP) estimation using such priors
are known [12] to lead to the following optimization problem:

(x∗, γγγ∗) = arg min
x,γγγ

(‖y −Dx‖22 + λ ‖x‖22 +

N∑
i=1

γiρi (5)

where ρi = σ2 log( 2πσ2(1−κi)
2

λκ2
i

). The parameters κi in Eq.(5)
have different values for each sparse coefficient, which is
essential to classification under such a Bayesian framework.
It is noted that this is a more general formulation than the
framework in [18] where authors simplified the optimization
problem by assuming the same κi for each coefficient and
the last term in Eq.(5) reduces to ρ‖x‖0. The optimization
problem in Eq.(5) (for fixed and known ρi) is challenging
with no-known global minima. Nevertheless, sub-optimal
algorithms have been developed recently etc [11, 19, 20].

2.2. Multi-view classification
For the situations where multiple measurements from
different views of the same target are obtained, the model
described above can also be well applied. In such situations,
collaborative spike and slab priors can be written as:

Y|D,X,ΓΓΓ, σ2 ∼
M∏
m=1

N (Dxm, σ
2I) (6)

X|ΓΓΓ, λ, σ2 ∼
M∏
m=1

N∏
i=1

γmi
N (0, σ2λ−1) + (1− γmi

)I(xi = 0)

ΓΓΓ|K ∼
M∏
m=1

N∏
i=1

Bernoulli(κmi
)

and the corresponding optimization problem will become:
(X∗,ΓΓΓ∗) = (7)

arg min
X,ΓΓΓ

M∑
m=1

(‖ym −Dxm‖22 + λ ‖xm‖22 +

N∑
i=1

γmi
ρmi

)

where ρi = σ2 log(
2πσ2(1−κmi

)2

λκ2
mi

), X = [x1, ...,xm, ...,xM ]

∈ RK×M , ΓΓΓ = [γγγ1, . . . , γγγm, . . . , γγγM ] ∈ RK×M , D =
[D1, ...,Dc, ...,DC ] ∈ Rd×K , Dc = [D1

c , ...,D
m
c , ...,D

M
c ] ∈

Rd×kc , Dm
c ∈ Rd×tm , and

∑M
m=1 tm = kc (tm is the num-

ber of training samples from the mth view of a target). Since
κmi

is assumed to have different values for each coefficient
corresponding to each view, the framework is capable of rep-
resenting general sparse structures of the matrix X. Similar
to the single-view problem, after solving the optimization
problem corresponding to each class, the class label can be
decided as below:

c∗ = arg min
c∈{1,...,C}

M∑
m=1

‖ym −Dδc(x
∗
m)‖2 (8)

3. JOINT PRIOR AND COEFFICIENT ESTIMATION
3.1. The optimization problem
The collaborative Bayesian framework based classification
described above shows us that estimating values of the param-
eter κmi

accurately is key to obtaining high classification ac-
curacy. Unfortunately, as the parameter that induces the spar-
sity, the values of κmi are different for each coefficient each
view. Generally, we can conduct cross-validation or use the
traditional method MCMC mentioned in [13] to estimate the
values. However, both the methods require daunting calcula-
tion load, which becomes especially serious when the num-
ber of classes and views become quite large. Therefore, in
this paper, we propose a new Joint Prior and Coefficient Esti-
mation Method (JPCEM) to estimate the parameter κmi

more
effectively. In particular, we propose a novel solution for an
extended version of the problem in Eq.(5), where the κi’s and
hence ρi’s are determined automatically in an iterative proce-
dure as opposed to be fixed and known.

We begin by observing that ρmi
is monotonically

decreasing with respect to κmi
, and most values of ρmi

will
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Fig. 2: database capturing and data samples

be higher than 0 if the value of σ2

λ is chosen suitable (an
example is shown in the experiments). That is, the higher the
probability that a sparse coefficient is not zero, the lower ρ
will be. As a result, we can propose a reasonable assumption
that the larger the absolute value of the sparse coefficient, the
higher the probability that the coefficient will not be zero. On
the basis of this assumption, ρmi

can be expressed as

ρmi = σ2 log(
2πσ2(1−

∣∣∣ xmi

(1+α)xM+ε

∣∣∣)2

λ(
∣∣∣ xmi

(1+α)xM+ε

∣∣∣)2
) (9)

where xM is the maximum value in the vector xm, ε is a small
value bigger than 0, and α is chosen once the value of σ2

λ is
set and fixed to promise the condition that ρmi > 0, we focus
on solving the following problem:

X∗ = argmin
X

M∑
m=1

(
∥∥∥ŷm − D̂xm

∥∥∥2

2
+ ‖wm ◦ |xm|‖1)

(10)
where ◦ represents the Hadamard product, ŷm = [yT

m 0]T,
D̂ = [DT

√
λIII]T, and wmi

=
ρmi

|xmi |+ε
, ε > 0. To tie

the problem in Eq.(10) to the one in Eq.(5) note that the
term ‖wm ◦ |xm|‖1 approximates or mimics

∑
i γiρi. In

particular, when γmi
= 1 and hence |xmi

| 6= 0, ωmi
|xmi
| =

ρmi

|xmi |+ε
|xmi
| → ρmi

, i.e. ρi is updated. Similarly, when

γi = 0 and hence |xmi
| = 0, the update generates a 0.

If wmi is inversely related to the magnitude of xmi
, it can

be regarded as a standard re-weighted-l1 form, which is true
since except for 1

|xmi
| , ρmi

is also monotonically decreasing
with respect to xmi

. The entire sparse matrix X is obtained
column-wise by solving M problems (one for each view) of
the form in Eq.(10).
3.2. The iterative algorithmic procedure
Our overall solution is described in Algorithm 1. The essence
of our method is to start with initial values of parameters and
solve a sequence of convex problems, such that each problem
in the sequence is a re-weighted l1 problem. Solutions of
standard re-weighted l1 problems can be found in [21]. The
updates to κmi , ρmi , wmi are done iteratively and the updated
parameters are used to form the next problem in the sequence.

Algorithm 1 JPCEM

Input: D, Y = [y1, ...,yM ]

Initialize: ε, α, σ, λ, w(0)
mi = 1, κ(0)

mi = 0.5, i = 1, ..., N ,
X(0) = [x

(0)
1 , ...,x

(0)
M ] = 0, X(1) = [x

(1)
1 , ...,x

(1)
M ] = 1,

k = 1.
while

∥∥∥x(k)
m − x

(k−1)
m

∥∥∥2

> ε for m ∈ [1, ..,M ] do

x(k)
m = argmin

Xm

∥∥∥ŷm − D̂xm

∥∥∥2

2
+ ‖wm ◦ |xm|‖1

Update

κ
(k)
mi =

∣∣∣∣ x(k)
mi

(1+α)x
(k)
M +ε

∣∣∣∣, ρ(k)
mi = σ2 log(

2πσ2(1−κ(k)
mi

)2

λ(κ
(k)
mi

)2+ε
),

w
(k)
mi =

ρ(k)
mi∣∣∣x(k)

mi

∣∣∣+ε , k = k + 1

end while
Output: X∗ = [x

(k)
1 , ...,x

(k)
M ], γ∗mi

=
x(k)
mi∣∣∣x(k)

mi

∣∣∣+ε

Finally, the class label can be decided according to the
sum of residues from different views as in Eq.(8).

4. EXPERIMENTAL RESULTS
The proposed JPCEM method is evaluated on the well-
known MWIR database collected by NVESD, and the
following state-of-art methods are selected specifically to
be compared against: Graph-based multi-view classification
method (GMCM) [22], which can be considered among
the most effective non-SRC-based multi-task classification
method; Joint SRC (JSRC) method [23], which is suitable
for the situations where row sparsity property can hold; and
Joint Dynamic SRC (JDSRC) method [10], which is suitable
for more general dynamic sparse structures.

MWIR data base: The database is collected by NVESD
to support the ATR algorithm development community [15].
It contains MWIR images of 10 different non-human targets
including civilian vehicles, military vehicles, carriers and
weapons (carried on the vehicles or carriers). The images
are captured by letting the target run on circles with different
ranges and distances from a camera at the same location. As
a result, the images from different views of the targets are
available immediately. The process and example images are
illustrated in Fig. 2. In our experiment, we extract 1 the part
including the target from the available images and rescale the
cropped image into the size of 40×20 pixels. 127 images per
view of each target class are used as training images, and 50
images per view per class are used as test images. The final
classification results from the experiments under different
conditions can be seen in Fig.3 (set α = 1

9 ). Fig.3(a) shows
the relation between κmi

and ρmi
by setting σ = 0.018 and

λ = 0.00002. As expected, ρmi
and κmi

are inversely related

1See [24] for the extraction process.
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Fig. 3: Results: (a) ρ vs. κ, (b) Classification accuracy vs. no. of
views, (c) Classification accuracy vs. no. of training samples, (d)
Exploring Selection Bias: Distribution of classification rates over 20
different random selection of the same number of training samples.

with a monotonic decrease of one w.r.t the other. Fig.3(b)
shows the classification accuracy by changing the number of
views from 1 to 5 (training size: 5 images per view per class).
Fig.3(c) shows the classification accuracy by changing the
training size from 2 to 10 images per view per class (number
of views fixed at 5). Fig.3(d) shows a Gaussian fit to the
histogram of classification accuracy values across 20 different
ways of selecting training samples (5 views, training size: 5
images per view per class). Remarkably in Fig. 3(d), JPCEM
achieves the highest mean value while exhibiting the smallest
variance indicating not only high classification accuracy but
robustness to the exact choice of training samples.

5. CONCLUSION
We propose a sparsity constrained framework for automatic
classification and recognition of IR images. Our method
crucially alleviates the need to know sparsity inducing model
parameters in advance, which are in turn jointly estimated
with sparse coefficients. This adaptation to the underlying
data set results in vastly improved classification results.
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