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ABSTRACT 
 
In this paper, we present an innovative workflow for 
retrieving biophysical traits of vegetation by means of 
inverting the radiative transfer model PROSAIL from UAV 
borne hyperspectral data. The approach makes use of 
spectral images acquired with a Fabry-Perot interferometer 
in the visible and near infrared spectral range. Even of the 
reduced spatial coverage of UAV acquisition, the high 
spatial resolution of such images makes model inversion 
computationally highly demanding. To overcome this, we 
made use of a machine learning method. Firstly, we 
generated look up tables by means of model forward runs 
based on variating model parameters according to prior 
knowledge. Random forests were then trained and applied 
to radiometrically calibrated UAV borne images. This 
allowed to retrieve model parameters for the area of interest 
(AOI). The approach showed to be computationally 
efficient and usable for ecosystems with high spatial 
variability. 
 
 

Index Terms— UAV, PROSAIL, model inversion, 
machine learning, ecosystem traits 
 

1. INTRODUCTION 
 
In the recent years many low-cost and lightweight 
multispectral sensors became available in the market. These 
instruments favored the development of vegetation indices 
(VI) approaches for qualitative assessment of vegetation 
properties [1][2]. Beside such sensors, a number of UAV 
carryable hyperspectral instruments are being used by the 
scientific community. Such sensors are more sophisticated 
and require proper acquisition and calibration. On the other 
side, hyperspectral data are a powerful tool for investigating 
quantitatively vegetation properties. In fact, such data can 
be used for inverting radiative transfer models. Calibrated 
model parameters can be then assimilated to ecosystem 
traits. This offers unforeseen possibilities for ecological 
analysis at very high spatial resolution. 
 

2. METHODS 

 
2.1. The study area 
 

Fig. 1: channels and full width at half maximum for the adopted acquisition 
modus of the Fabry Perot interferometer.  
 

The area of interest is located in an alpine valley (46.68° N, 
10.59° E). The ecosystem is a dry pasture with sparse 
shrubs. Patches are dominated by grasses and others are 
dominated by herbs [3]. This was selected because of its 
very high spatial complexity. 
 
2.1. Image pre-processing 

 
The method described in this paper was applied to data 
collected during an acquisition campaign from 21 August 
2015. The Fabry Perot interferometer (Rikola Ltd.) was 
mounted on a UAV and stabilized by means of a gimbal to 
minimize changes of viewing geometry during the 
acquisition of spectral bands. The sensor was programmed 
to acquire equidistanced bands (Fig. 1). An automatic flight 
with constant speed (1 m/s) and height (70 m) was 
conducted over the AOI. The sensor was activated by an 
intervalometer (3 seconds interval).  

Because of the sensor technology spectral bands are 
acquired sequentially therefore - to produce data cubes - we 
had to perform a band to band match as described in [4] and 
[5]. Quality of matched data cubes was then assessed based 
on total number of black pixels. Cubes with bad matching 
were excluded. The bands were then mosaicked and 
orthorectified. Shadows were classified by means of a 2 



classes kmeans in the band number 14. We made use of 
infrared because in this part of spectrum differences 
between shadows and lights are more relevant. We masked 
such areas. To overcome to issues with directional 
observation at the margins of the AOI, we removed pixels 
obtained by the composition of less that 5 single images. 
Ground spatial resolution was finally reduced to 0.5 m. 
 
 
2.2. Radiometric calibration 
 
We performed a radiometrical calibration of mosaics by 
using near nadiral acquisition of black and white ground 
reference panels. The reference material used was 
“Odissey64” (Kayospruce Ltd.). The spectral properties of 
the material were characterized in controlled conditions 
with a spectrometer (hr1024i SVC Ltd.). Mean reflectance 
in the range 500 to 900 nm for the white panel was 0.728 
(sd 0.011) and for the black panel 0.0378 (sd 0.001). For the 
calibration of the mosaics we applied the empirical line 
method. 
 
2.3. Model forward runs 
 
Models runs were executed making use of Prosail 5b [6]. 
Leaf angle distribution was assumed to be spherical. The 
angle of observation was fixed to nadiral. Sun geometry was 
set as from the time and location of the acquisitions. We 
decided to focus on model parameters that are assimilable to 
ecosystem traits and are measurable in the field: chlorophyll 
content (range 10-40 μg/cm²) and Leaf Area Index (0.1 to 5 
m²/m²). Other parameters were fixed to standard values. The 
chosen parameters were varied randomly and model was run 
for 100000 times. Data were convoluted to the spectral 
response functions of the Fabry Perot interferometer. We 
added random noise to the modelled spectra. In this way, we 
made our approach capable to account for noise in the field 
measurements.  
 
2.3. Model inversion 

 
For inverting the model, we made use of Random Forests 
[7]. This was used as an ensemble method for regression 
that is based on the uncontrolled development of decision 
trees (n = 200). We opted for this method because of its 
demonstrated efficiency with large data sets.  
 
 

6. RESULTS 
 

6.1 Sensitivity to model parameters 

 
A “parameter at time” sensitivity analyses showed that 
spectra are affected differently by the two model parameters 
that we opted to calibrate. In fact, leaf area index (Fig. 1a) 

seems to be a key for the whole spectral range but still more 
important in the infrared region. On the other side, 
chlorophyll content (Fig 1b) affects more the difference 
between the green and red regions. We assume therefore 
that effects of the 2 parameters can be distinguished in the 
inversion model process. 

 

 
Fig.  2: sensitivity of model output to a) leaf area index and b) Chlorophyll 
content model parameters. 
 

 
6.2 Maps of ecosystem traits 
 
We found that spatial patterns of LAI parameter (Fig. 3a) 
correspond to field observations. Range of measured LAI of 
herbaceous patches at the study site by means of laboratory 
analyses was 0.79-2.89 m2/m2. In our inversion approach 
such values are exceeded just by shrubs. Chlorophyll 
content values (Fig 3b) were consistent with literature for 
this vegetation type. 
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Fig.  3: maps of inverted a) LAI and b) Chlorophyll content model parameters. 

 
 

5. CONCLUSIONS 
 
UAV borne imaging spectrometry can provide very high 
spatial resolution data. Such data have to be calibrated with 
ground references because of scale affinity. Calibrated 
mosaics can be used for inverting radiative transfer model 
allowing for mapping ecosystem traits with very high spatial 
resolution. Still, classical methods are computationally 
intensive. Our approach is capable efficiently to provide 

quantitative information overcoming the limitation of 
vegetation indexes. Our first results showed that model 
retrievals of herbaceous vegetation are consistent with the 
range of ground measurements and literature values. We 
conclude that UAV measurements have a potential mapping 
ecosystem traits at landscape level over vegetation with 
complex patterns.  
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