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ABSTRACT

This study presents the first results of the use of co-clustering
to identify potential spatial and temporal concurrences of
favourable conditions for the emergence and maintenance of
West Nile Virus (WNV) in Greece. We applied the Bregman
block average co-clustering algorithm with I-divergence to
various time series (from 2003 to 2016) of indices derived
from Land Surface Temperature (LST) reconstructed from
MODIS products. The results show that the combination
of two temporal and three spatial groups performs best in
identifying times and areas with and without WNV human
cases, yielding smaller standard deviations in co-clusters.
Among the indices that appeared to perform better we found:
number of summer days, annual average of mean and max-
imum LST, potential number of mosquito and virus cycles
(EIP) and mean LST of the WNV transmission season. These
variables are consistent with known effects of temperature
over mosquito development and reproduction as well as virus
amplification. Further research will be carried out to identify
groups of variables that cluster both in space and time.

Index Terms— Time series, MODIS, Land Surface Tem-
perature, Data Mining, Geo-Health

1. INTRODUCTION

The West Nile virus (WNV) is one of the mosquito-borne
flavivirus most widely distributed in the world. It causes a
variety of symptoms to humans: from an asymptomatic in-
fection to severe and even fatal encephalitis. Wild birds are
the major reservoirs of the virus and the main transmission
route is through Culex mosquito-vectors. The frequency of
reported outbreaks with severe symptoms has shown an in-
crease over the last 15 − 20 years in Europe and the USA.
In 2010, Greece reported the largest number of WNV human
cases in Europe [1], most of them concentrated in the region
of central Macedonia. In the four subsequent years, the dis-
ease further spread both southwards and eastwards, and more

than 600 confirmed cases and 73 deaths were reported [2].

Several climatic and environmental conditions might de-
termine the onset of zoonotic diseases’ outbreaks. In the
case of mosquito-borne pathogens such as WNV, temperature
plays a central role. For example, higher than usual tempera-
tures are known to influence vector competence, to accelerate
virus replication within mosquitoes, to boost mosquitoes re-
production rates, and to prolong their breeding season. As
such, temperature is one of the main environmental factors
addressed when studying vector-borne viruses carried by
mosquitoes [3].

Nowadays, most of these relevant variables or their prox-
ies can be derived from remote sensing time series, for exam-
ple Land Surface Temperature (LST). These variables can be
analyzed by unsupervised methods to identify regions (group
of pixels) and periods (time series time stamps) that behave
similarly and imply favourable conditions for the onset and
development of disease outbreaks. Within unsupervised ap-
proaches, clustering is a fundamental tool in data analysis as it
allows the exploration of complex datasets. Co-clustering al-
gorithms are able to find blocks of similar data in a matrix by
simultaneously considering information along the rows and
columns [4]. In the last decade, co-clustering methods were
used for pattern analysis in disciplines such as text and docu-
ment relation and local pattern of gene expression. However,
these methods were not used in remote sensing applications
until recent years. In this field, the co-clustering allows to
analyze hyper-spectral images (spectral-spatial groups) [4] or
to detect space-time groups in time series data of meteorolog-
ical stations and gridded phenological indices [5, 6].

This paper presents the first exploratory analysis of cli-
matic indices derived from LST time series using the co-
clustering method in the context of Geo-Health research. The
emergence of WNV in Greece in 2010 has been related to
positive anomalies in temperature that year [1]. Therefore,
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in this study we attempt to identify the potential spatial and
temporal concurrence of favorable conditions that might re-
late to the emergence and maintenance of WNV in Greece.
The rest of the paper is outlined as follows. Section 2 reviews
materials and methods used in this work. Section 3 presents
the experimental results and its discussion. Finally, Section 4
concludes this paper.

2. MATERIALS AND METHODS

2.1. Data

We used a series of biologically meaningful indices known or
hypothesized to affect mosquito populations, WNV transmis-
sion or disease risk on an annual basis (See [7] and references
therein). The indices were derived from a time series of daily
reconstructed LST products from MODIS sensor for the pe-
riod 2003 − 2016 [8] at 1 km spatial resolution, for an area
covered by 805×889 pixels. In total, we estimated 23 indices
including annual averages of minimum, maximum and aver-
age LST (LST minimum, LST maximum and LST average,
respectively), standardized anomalies, number of summer
days (Days Tmax high25), number of days with average
LST ∈ [20, 30]◦C (Days Tmean h20 l30), average LST of
mosquito growing season (Tmean mosq season), average
LST of WNV transmission season (Tmean WNV season),
length of mosquito growing season (Mosq season length) and
of WNV transmission season, number of potential mosquito
cycles per year (Mosq cycles) and number of potential Ex-
trinsic Incubation Periods (EIP) per year (WNV EIP). Details
about the estimation of the indices can be found in [7].

2.2. Analysis

We applied the Bregman block average co-clustering algo-
rithm with I-divergence (BBAC I) to each of the time series of
LST derived indices in order to identify similar observations
along both spatial and temporal dimensions. In essence, co-
clustering looks for blocks of rows and columns that permit
to recompose the original matrix by minimizing the distance
between the recomposed matrix and the original one. We
chose the I-divergence metric based on previous experiences
with time series co-clustering [5]. We run the co-clustering
for different combinations of space and time groups and se-
lected the best set according to the proportion of WNV cases
during the period 2010 − 2014 that overlapped with single
co-clusters. We also estimated mean and standard deviation
for each co-cluster in all combinations tested and for each of
the 23 variables studied.

We used GRASS GIS for the processing of MODIS LST
time series and extraction of derived indices. R implemen-
tation of the BBAC I 1 was used for the co-clustering. The

1https://github.com/fnyanez/bbac

Table 1. Mean and standard deviation (SD) of variables that
correctly split areas with and without WNV reported cases in
the best co-cluster (CC) runs: 2-2, 2-3 and 3-2 (space and
time, S/T).

CC Variable S/T Mean SD
2-2 Days Tmax high25 2-2 164.27 28.80

LST average 2-1 17.09 1.67
LST maximum 2-1 24.30 2.19
Mosq cycles 2-2 13.63 1.78
Tmean WNV season 1-2 23.63 1.88
WNV EIP 1-2 15.81 3.24
Mosq season length 1-1 259.78 24.27
Tmean mosq season 2-2 22.39 1.79

2-3 Days Tmax high25 1-1 159.84 27.11
LST average 1-2 17.02 1.83
LST maximum 2-3 24.22 2.22
Mosq cycles 1-1 13.63 1.78
Tmean WNV season 1-2 23.84 1.91
WNV EIP 1-3 15.67 3.19
Mosq season length 1-1 262.94 22.92
Tmean h20 l30 2-3 110.30 19.28
LST minimum 2-2 10.44 1.83

3-2 Days Tmax high25 1-1 176.65 21.54
LST average 2-2 18.16 1.22
LST maximum 1-2 25.50 1.69
Mosq cycles 3-1 14.48 1.40
Tmean WNV season 3-1 24.69 1.46
WNV EIP 2-1 17.46 2.58
Days Tmean 20 30 3-1 119.75 16.39
Tmean mosq season 2-2 23.42 1.37

co-clustering was run in a virtual machine with 8 cores and
32 GB of RAM provided by ESA RSS Cloudtoolbox2.

3. RESULTS

Different number of spatial and temporal groups were used
in the co-clustering, from 2 to 4 in the spatial and from 2
to 3 in the temporal clusters. Since the main objective was
the identification of environmental differences in time, before
and after the outbreak of WNV and spatial differences in
areas with and without reported human cases, we started with
2 spatial and 2 temporal groups.

We found that the combinations 2 − 2, 2 − 3 and 3 − 2
(space and time) yielded the best clusters in terms of separa-
tion of areas with and without WNV reported cases and years
that were grouped together. In spatial terms, there were 6
variables that appeared in all those best combinations: num-
ber of summer days, annual average of mean and maximum
LST, potential number of mosquito cycles and potential num-

2http://eogrid.esrin.esa.int/cloudtoolbox/
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ber of EIP and mean temperature of the WNV transmission
season (June-October). Figure 1 shows four of these variables
for the co-cluster with 3 spatial and 2 temporal groups.

Mosquito season length and mean LST of mosquito sea-
son also appeared to differentiate areas with and without
WNV human cases. In all co-clustering combinations run,
the spatial co-clusters obtained for these variables included
more than 87% of the WNV reported cases.

In the temporal dimension, several variables were found
to identify the years surrounding the onset of WNV (2009,
2010 and 2011) in the same temporal group. However, no
co-clustering was able to group all 5 years with reported
cases (2010 − 2014) in the same co-cluster. Only the an-
nual mean LST as well as the annual average minimum LST
showed groups that split the series into meaningful groups:
2003 − 2006 and 2007 − 2016, though years 2009 and 2011
were included in the first group.

Mean and standard deviations were estimated for each
co-cluster and variable that correctly separated areas with and
without WNV reported cases in the period 2010−2014 (Table
1). The temporal cluster reported in each case, was the one
including the years surrounding the onset (2009−2011). The
lowest standard deviations were obtained for the co-cluster
including 2 temporal groups and 3 spatial groups. The vari-
ables that better identified the areas with WNV cases, showed
higher mean values as compared to the other co-clustering
combinations. These variables and values are clearly related
to favorable conditions for mosquitoes and virus develop-
ment, i.e., more summer days, higher mean and maximum
LST, higher number of mosquito cycles and virus EIP, as
well as higher mean LST during the transmission season
(June-October).

4. DISCUSSION

This study is to the best of our knowledge the first attempt
to use co-clustering in the Geo-Health domain. Preliminary
results seem promising, especially in terms of variables and
spatial groups identified. It seems likely that an environmen-
tal signature characterizes places where WNV cases were
first reported and further spread. Rather frequently the years
2009, 2010 and 2011 appeared together in temporal clusters.
Human cases were first reported in 2010 in Greece, but in
2009 the virus was already detected in host birds [9]. It is
then highly likely that some favorable conditions concurred
those years to trigger the outbreak.

The spatial clusters obtained in our co-clustering runs
seem to better separate areas with and without WNV human
cases than the temporal clusters separate years with and with-
out cases. This is because the temporal groups included years

without WNV cases. Such results might be explained by the
number of groups selected (i.e., 2 or 3 might not be enough),
other environmental factors not considered in our study, or
just by the fact that conditions leading to outbreaks were
already met in Greece, but the virus was not yet established.
Once it did, plus (or because of) some anomalous tempera-
tures those years and in certain places, i.e., higher number
of summer days, potential for higher number of mosquito
and virus cycles, higher mean LST during mosquito growing
season, the outbreak occurred given the susceptibility of pop-
ulation. These are all conditions known to influence vector
competence, accelerate virus replication within mosquitoes,
boost mosquitoes reproduction rates, and prolong their breed-
ing season [10].

This study was an exploratory research in which we at-
tempted to uncover variables that allow us to characterize ar-
eas where WNV have occurred and new areas behaving sim-
ilarly in space and time that could potentially be at risk for
future outbreaks. For example, after two years without re-
ported WNV human cases (2015 and 2016), Greece reported
WNV cases again in 2017 in ”risky” areas according to our
analysis, i.e., parts of West Greece, Peloponese and Crete is-
land 3. The next step in this research is to use tri-clustering
techniques to analyze space-time groups using the informa-
tion of all LST derived indices together. This would allow us
to identify groups of variables that cluster both in space and
time [11].

5. REFERENCES

[1] K. Danis, A. Papa, G. Theocharopoulos, G. Dougas,
M. Athanasiou, M. Detsis, A. Baka, T. Lytras, K. Mellou,
S. Bonovas, and T. Panagiotopoulos, “Outbreak of West Nile
Virus Infection in Greece, 2010,” Emerging Infectious Dis-
eases, vol. 17, pp. 1868–1872, 2011.

[2] D. Pervanidou, M. Detsis, K. Danis, K. Mellou, E. Papaniko-
laou, I. Terzaki, A. Baka, L. Veneti, A. Vakali, G. Dougas, and
others, “West Nile virus outbreak in humans, Greece, 2012:
third consecutive year of local transmission,” Euro Surveill,
vol. 19, pp. pii20758, 2014.
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Fig. 1. Spatial co-clusters for the variables (a) number of summer days, (b) average maximum LST, (c) number of potential
mosquito cycles and (d) number of potential WNV extrinsic incubation periods (EIP).
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