
This item is the archived peer-reviewed author-version of:

Fusion of hyperspectral and Lidar images using non-subsampled shearlettransform

Reference:
Soleimanzadeh Mohammad Reza, Karami Azam, Scheunders Paul.- Fusion of hyperspectral and Lidar images using non-subsampled shearlettransform
IEEE International Geoscience and Remote Sensing Symposium - ISSN 2153-6996 - (2018), p. 8873-8876 
Full text (Publisher's DOI): https://doi.org/10.1109/IGARSS.2018.8519547

Institutional repository IRUA

http://anet.uantwerpen.be/irua


FUSION OF LIDAR AND HYPERSPECTRAL IMAGES USING NON-SUBSAMPLED
SHEARLET TRANSFORM

Mohammad Reza Soleimanzadeh 1, Azam Karami1, Paul Scheunders2

1Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran
2Visionlab, University of Antwerp, Belgium

ABSTRACT

In this paper, a new fusion method for merging the spec-
tral and spatial contents of hyperspectral images (HSI) with
the height information of light detection and ranging (LiDAR)
for increasing the classification accuracy of HSI is introduced.
First, 2D non-subsampled shearlet transform (NSST) is ap-
plied to each band of hyperspectral and LiDAR data sepa-
rately in order to extract the spatial features. Second, princi-
pal component analysis (PCA) is applied to all shearlet sub-
bands of HSI in order to reduce their dimension. Third, the
spectral information of HSI and obtained spatial features are
integrated and classified using subspace multinomial logistic
regression (MLRsub). We evaluate the performance of the
proposed method over University of Houston, USA and a ru-
ral one captured over Trento, Italy. The obtained results show
that the proposed method can efficiently classify the joint hy-
perspectral and LiDAR images.

Index Terms— Fusion, Hyperspectral Images, LiDAR,
Classification, Shearlet transform.

1. INTRODUCTION

Recently, hyperspectral image classification has significantly
considered in different practical applications [1]. The HSI
usually have high spectral resolution, however the spatial res-
olution is not adequate due to the sensor limitations . The
lower spatial resolution of HSI causes difficulty for discrim-
inating complex classes especially for urban areas [2]. For
example, roof and roads, which are made by the same mate-
rial, demonstrate the similar spectral characteristics. If data
from the other sources such as LiDAR of the same scene is
available, it could be fused with HSI in order to improve the
results of classification. In fact, the LiDAR data provides the
detailed information about the height of objects. It is note-
worthy to mention that the classification of objects with the
same elevation in the LiDAR data could not create reasonable
results.

In recent years, many techniques have been developed for
fusion of HSI and LiDAR data for classification. In these
methods, first the spatial features are extracted from the HSI
and LiDAR data. After that, the spectral information of HSI

are fused with spatial features [2, 3, 4, 5, 6]. In [3], first PCA
is applied to the HSI. Then, the attribute profile (AP) is used
in order to extract the spatial features from the reduced HSI
and LiDAR data respectively. Finally, the obtained spatial
features and spectral information of HSI are combined and
classified by random forest (RF) classifier. In [4, 5], by use of
extinction profiles (EPs), the spatial features of HSI and Li-
DAR data are extracted. EP in comparison with AP has better
performance. It is exterma oriented instead of threshold ori-
ented, which makes it less sensitive to image resolution, and it
can be executed automatically. Then, the obtained spatial fea-
tures are integrated with spectral feature of HSI using sparse
and low rank analysis [2], graph based feature-fusion [5] and
orthogonal total variation analysis [4]. Finally, the fused data
are classified by SVM or RF [2, 4] and a learning based clas-
sifier [5] respectively. A flexible strategy based on morpho-
logical features and MLRsub was proposed in [6], for jointly
classifying HSI and LiDAR data without the need for regu-
larization parameters. In this paper, we also use the MLRsub
for fusion, but instead of using AP, a new spatial feature ex-
traction from HSI and LiDAR data is introduced based on the
shearlet transform (ST). This transform has been significantly
considered in many practical application such as denoising,
classification, etc. [7, 8]. In this article, the spatial features
are extracted using NSST. It is applied to each band of HSI
and LiDAR data. Then, the shearlet sub-bands of HSI are re-
duced using PCA. Finally, the MLRsub technique fuses the
multiple features.

The remainder of this paper is organized as follows: the
proposed method is introduced in Section 2. Experimental
results are shown in Section 3. In Section 4 some concluding
remarks are provided.

2. PROPOSED METHOD

2.1. NSST

In this paper, a special type of discrete shearlet transform is
applied, called non-subsampled shearlet transform (NSST).
The implementation of the NSST includes two main steps:
the application of non-subsampled pyramid (NSP) filter banks
and non-subsampled shearing (NSS) filter banks. A non-



subsampled filter bank does not include down/up-sampling
filters. NSP filter banks decompose the original image into
high-frequency and low-frequency sub-bands which are of
the same size as the original image. NSS executes the direc-
tional filtering in the spatial domain instead of the frequency
domain. The NSS filter banks divide the high-frequency sub-
bands into directional sub-bands. These filter banks are itera-
tively applied. At each iteration, the obtained low-frequency
sub-band is again divided into a lower scale high-frequency
and low-frequency sub-bands (see [8] for more details).

In the proposed method, 2D NSST is applied to each band
of HSI and LiDAR data separately. Let XH ∈ R(I1×I2×I3)

denotes the HSI where (I1×I2) is the number of pixels and I3
is the number of spectral bands. The LiDAR data is denoted
by XL ∈ R(I1×I2). After applying 2D NSST, we have:

XH
NSST (:, :, j) = NSST (XH(:, :, j)), j = 1, ..., I3 (1)

XL
NSST = NSST (XL) (2)

After that, PCA is applied to XH
NSST as follows:

XH
PCA = PCA(XL

NSST ) (3)

In the next step, MLRsub is applied to multiple spectral
and spatial features ( XH , XL

NSST , XH
PCA ). The MLRsub

classifier is briefly explained in the next subsection.

2.2. MLRsub

The spectral and spatial features are considered as Z ≡
(Z̃1, Z̃2, Z̃3) where Z̃1 = XH , Z̃2 = XL

NSST and Z̃3 =
XH

PCA. The MLR classifier is given by [6]:

pm(y
(c)
i = 1 | (Z̃i)m,ωm) =

exp(ω
(c)
m h((Z̃i)m))∑c

k=1 exp(ω
(c)
m h((Z̃i)m))

(4)
pm denotes the posterior probability of feature Z̃m for m =
1, 2, 3. Y = (y1, ..., yn) shows the labels of groundtruth, n is
the number of pixels (I1 × I2).

yi = [y
(1)
1 , y

(2)
2 , ..., y

(k)
i ]T where k is the number of

classes. yci = {0, 1} for c = 1, ..., k and
∑

c y
c
i = 1.

ω
(c)
m is the set of logistic regressor for class c and ωm ≡

[ω
(1)T
m , ...,ω

(c−1)T
m ]. h((Z̃i)m) ≡ [h1(Z̃i)m, ..., hl(Z̃i)

T
m]

is a vector of l nonlinear function of the input feature. The
MLRsub projects the training samples of each class into lower
dimension. This projection could improve the classification
accuracy (see [6] for more details). After calculating pm for
each features, they are combined and the maximum value for
c = 1, ..., k shows the class number.

The pseudo-code for the proposed method is shown in Al-
gorithm1.

Algorithm 1 PROPOSED ALGORITHM (NSST-MLRsub)

Input: Original HSI (XH ∈ R(I1×I2×I3)), LiDAR (XL ∈
R(I1×I2)) , Groundtruth (Gth ∈ R(I1×I2)), NSST Parame-
ters.
1- Apply 2D NSST to (XH ,XL)
2- Apply PCA to XH

NSST

3- Apply MLRsub to ( XH , XL
NSST , XH

PCA )
Output: Classification Map

3. EXPERIMENTAL RESULTS

3.1. Datasets

Two real hyperspectral and LiDAR datasets were used in the
experiments.

1- University of Houston data: This dataset were cap-
tured by the NSF-funded Center for Airborne Laser Mapping
(NCALM) on June 2012 over the University of Houston cam-
pus and its neighboring urban area. The HSI dataset has 144
spectral bands. Both datasets have the same spatial resolution
(2.5m). The whole scene of the data contains 349 × 1905
pixels. The existing groundtruth for this dataset includes 15
classes. The available numbers of training test samples are
shown in Table.1. The LiDAR, false color image of HSI and
groundtruth are depicted in Figs.1 (a), (b) and (c).

2- Trento data: It was captured over a rural area in the
south of the city of Trento, Italy. The subset used in this ex-
periment includes images of size 600 × 166 pixels. The Li-
DAR DSM data were acquired by the Optech ALTM 3100EA
sensor and the hyperspectral dataset captured by the AISA
Eagle sensor, all with a spatial resolution of 1m. The hy-
perspectral data includs 63 bands, where the spectral resolu-
tion is 9.2nm. The groungtruth with six classes are consid-
ered. Figs. 2(a-c) show the LiDAR, false color of HSI and
grandtruth respectively.

3.2. Results

In the proposed method (NSST-MLR), three level decompo-
sition is used and the number of shearing directions is chosen
[32, 32, 16, 16].

Tables.1 & 2 show the average accuracy (AA), overall
accuracy (OA) and the kappa (κ) coefficient. SVM classi-
fier applied to the LiDAR, HSI, NSST-PCA (LiDAR) and
NSST-PCA (HSI) for University of Houston and Trento
datasets respectively. Then the obtained classification results
of different data using SVM are compared with the fusion
method graph-based feature fusion (GBFF) [5], MLRsub-
MRF (HSI+LiDAR) [6] and proposed method NSST-MLRsub
(HSI+LiDAR). The fusion methods MLRsub-MRF and
NSST-MLRsub have better performance in comparison with
employing a single feature. It means that the fusion methods
could significantly integrate the information of both datasets



Table 1: Classification Results (Houston)

class train test
SVM
(HSI)

NSST-PCA-
SVM

(LiDAR)

NSST-PCA-
SVM (HSI)

NSST-PCA
-SVM

(HSI+LiDAR)
GBFF

MLRsub
-MRF

NSST-PCA-
MLRsub

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

198
190
192
188
186
143
196
191
193
191
181
192
184
181
187

1053
1064
505
1056
1056
182
1072
1053
1059
1036
1054
1041
285
247
473

82.05
81.20
100

91.95
97.44
95.10
76.39
46.62
76.48
58.10
76.18
75.02
68.07
99.19
98.30

23.17
27.25
99.80
62.21
18.18
66.43
72.76
66.19
13.12
22.39
51.80
31.02
69.12
99.59
1.69

82.43
83.36
100

92.23
98.67
95.10
80.59
47.48
80.54
59.74
81.11
80.69
70.52
100

98.30

83.03
81.52
100

95.64
99.15
92.31
87.59
90.26
91.78
82.76
96.58
92.32
76.84
99.53
98.81

78.73
94.92
100

99.34
99.62
95.80
87.87
95.25
89.71
81.18
86.34
92.70
87.02
99.19
89.64

81.67
83.55
100

91.09
99.62
88.11
92.72
77.77
89.80
77.99
97.72
78.19
78.94
99.59
98.09

87.31
99.31
100

95.81
99.94
95.71
92.46
94.93
92.33
84.21
97.34
87.29
85.67
100

99.55
AA
OA

Kappa

78.54
81.48
76.89

42.22
48.22
38.72

80.81
83.39
79.34

90.51
91.06
89.85

91.02
91.82
90.33

88.10
88.99
87.07

92.61
92.95
91.54

Time(s) 25.95 13.01 740.82 754.3 861 217.49 945.51

(HSI+LiDAR). In fact, spectral feature of HSI discriminate
the specific classes with distinctive spectral characteristics
and the LiDAR data could classify the objects with the dif-
ferent elevation information well. The obtained classification
results of proposed method are higher than GBFF [5] and
MLRsub-MRF [6]. It can be concluded that the ST could
extract spatial features more efficiently than AP and EP.

The classification maps obtained from SVM (HSI) and
NSST-MLRsub (HSI+LiDAR) are depicted in Figs 1.(d-e)
and Figs 2.(d-e) for both datasets. The proposed method
could significantly preserve the structure and this character-
istic is very important especially for urban areas. This is
the result of using ST for extracting the spatial features of
HSI and LiDAR data. In fact, NSST could create an optimal
sparse representation.

4. CONCLUSIONS

In this paper, a new method for fusion of HSI and LiDAR
data based on shearlet transform is introduced. The proposed
method improves all classification results in terms of the OA,
the AA, the kappa coefficient (κ) and the quality of classifi-
cation map. This clearly shows that the chosen sets of feature
(especially spatial shearlet features) are efficiently selected.
The spatial and spectral features could significantly improve
the classification performance. In future, our aim is to reduce
the computational complexity of the proposed algorithm.
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Table 2: Classification Results (Trento)

class train test
SVM
(HSI)

NSST-PCA
-SVM

(LiDAR)

NSST-PCA
-SVM(HSI)

NSST-PCA
-SVM

(HSI+LiDAR)
GBFF

MLRsub
-MRF

NSST
-PCA

-MLRsub
1
2
3
4
5
6

129
125
105
154
184
122

3905
2778
374
8969

10317
3252

90.96
83.87
96.52
96.23
77.40
69.10

42.30
92.08
44.11
97.03
83.16
50.98

92.24
88.48
43.31
99.81
97.68
86.10

95.76
98.32
92.34
99.79
98.26
90.21

99.53
98.79
99.79
99.50
99.76
93.01

93.34
93.26
93.31
99.50
95.20
76.86

99.75
98.75
95.45
99.86
98.91
98.61

AA
OA

Kappa

84.94
85.68
80.17

78.97
68.28
71.77

94.85
84.61
93.08

97.53
96.14
96.46

98.93
98.48
98.55

94.16
91.92
92.18

99.05
98.61
98.13

Time(s) 16.52 5.56 53.26 55.01 248 87.25 102.27

Fig. 1: (a) LiDAR data, (b) false color of the HSI, (c)
Groundtruth, (d) Classification map of SVM (HSI), , (e)
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NSST-PCA-MLRsub (HSI+LiDAR).
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Fig. 2: (a) LiDAR data, (b) false color of the HSI, (c)
Groundtruth, (d) Classification map of SVM (HSI), (e)
Classification map of GBFF, (f) Classification map of

NSST-PCA-MLRsub (HSI+LiDAR).


