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ABSTRACT 

 

In the past the effect of soil roughness was often considered 

secondary within the determination of soil moisture from 

remote sensing data. Several studies showed that accurate 

determination of soil roughness leads to an improved 

estimation of soil moisture [1]. Two default parameters to 

describe the surface roughness are the standard deviation of 

the surface height variation 𝑠 and the surface correlation 

length 𝑙 with its corresponding autocorrelation function [2]. 

Both parameters (𝑠, 𝑙) affect the emissivity measured by 

radiometers as well as the backscattering observed by radars 

[1]. In this study, we develop a physics-based approach to 

retrieve 𝑠 and 𝑙 by combining both microwave signals based 

on active-passive microwave covariation. To test the 

approach, containing a forward model and a retrieval 

algorithm [3], [4], we used active/passive microwave data 

measured with the ComRAD truck-based SMAP simulator 

at L-band [5]. Results and validations with corresponding 

field measurements on ground show that 𝑠 and 𝑙 can be 

estimated simultaneously when using this approach. The 

physics-based retrieval algorithm works robustly for two 

investigated test fields having an RMS-Error of 0.68 cm and 

0.69 cm between the microwave-based and field-measured 

𝑠-values, and of 3.13 cm and 3.04 cm for 𝑙-values. The first 

validation of the results reveals that the influence of the 

autocorrelation function, needed within the retrieval, is 

distinct.  

 

Index Terms— radar, radiometer, soil roughness, RMS 

height, correlation length, ComRAD 

 

1. INTRODUCTION 

 

Since soil moisture controls the water and energy exchange 

between pedosphere and atmosphere over continental 

regions, it is a key variable together with soil roughness and 

vegetation biomass that affects the emissivity 𝐸 [-] and the 

backscattering |𝑆𝑃𝑃|2 [dB] characteristics of natural surfaces 

[6]. The estimation of soil moisture through satellite sensor 

systems using combined radar and radiometer data has 

already been explored in several studies [7]. But until 

recently the effect of soil roughness on moisture retrieval 

was not in focus of research, albeit the precise determination 

of surface roughness leads to performant results for 

monitoring of soil moisture [1]. Since soil roughness 

strongly influences processes like infiltration, evaporation, 

soil erosion and growth of agricultural plants [8], we present 

in the following the theory and application of a new method 

to determine soil surface roughness through the combination 

of active and passive microwave signatures, whose results 

can then be used for instance in a consecutive step for a 

refined estimation of soil moisture. In order to determine the 

surface roughness parameters 𝑠 and 𝑙, we link active radar 

and passive radiometer microwave signatures at L-band 

through a linear functional relationship between land surface 

backscattering (|𝑆𝑃𝑃|2 [dB]), and the respective natural 

microwave emission in form of brightness temperature (𝑇𝑏𝑃 

[K]) [9]. 

 

2. TEST SITE AND DATA BASE 

 

The data base for this study are quasi-simultaneously 

acquired active and passive microwave measurements 

collected with the ComRAD (combined radar/radiometer) 

truck-based SMAP simulator, as well as in situ soil 

roughness data derived from digital photographs of the field 

surface profile against a known grid, collected during the 

APEX12 field experiment carried out by the National 

Aeronautics and Space Agency (NASA) and the U.S. 

Department of Agriculture (USDA) in Maryland 2012 [5], 

[6]. The active and passive microwave measurements were 

conducted under dry conditions with the ComRAD truck-

based SMAP simulator at incident angle of 40° over 

soybean (located south from the truck = field south) and 

corn (located north from the truck = field north) fields 

throughout the entire crop growth cycle from June to 

October 2012. The ComRAD system were mounted on a 



hydraulic boom truck in 19 m height between both fields. 

Results presented in this study assess only data acquired 

during the month June, since we delineate analyses with a 

novel physics-based model to calculate surface roughness 

parameters solely over bare soils. Detailed descriptions of 

technical properties of the ComRAD truck-based SMAP 

simulator as well as of the study site can be found in [5] and 

[6]. 

 

3. METHODS 

 

In Figure 1 we defined several processing steps for the 

algorithm to determine the surface roughness parameters 𝑠 

and 𝑙, which will be presented in detail in the following.  

 

Figure 1: Workflow of the algorithm for determination of 

surface roughness parameters 𝒔 and 𝒍 derived from 𝒑-

polarized differences between the physics-based model for 

covariation 𝜷𝑴𝒐𝒅𝒆𝒍𝑷𝑷
 and the data-retrieved covariation 

𝜷𝑫𝒂𝒕𝒂𝑷𝑷
. 

 

3.1. Physics-based formulation for Active-Passive 

Microwave Covariation 

 

For joint evaluation of measurements from radar and 

radiometer sensors, their covariations with regard to soil 

moisture are one feasible option. Thereby, a physics-based 

formulation of covariation can be used based on Kirchhoff’s 

law of energy conservation [3].   

The inversion of this physics-based formulation leads to a 

data-based retrieval of active-passive microwave covariation 

[4]. The relationship between the backscattering coefficient 

(|𝑆𝑃𝑃|2 [dB]) of the radar and the emission (𝐸 [-]) of the 

radiometer is functionally linear and can be represented by 

the two regression parameters 𝛼 and 𝛽, with 𝛼 being the 

intercept and 𝛽 being the slope of the linear regression [9]. 

For bare soils the intercept 𝛼 is 1, due to the fact that 

vegetation volume scattering does not occur [3]. Therefore, 

the slope 𝛽 describes the covariation between 𝐸 and |𝑆𝑃𝑃|2 

as a direct function of soil roughness for bare soils [3] and 

can be modelled as well as retrieved with the physics-based 

formulation. Hence, the covariation parameter 𝛽 can be 

calculated from quasi-simultaneously acquired active and 

passive microwave measurements [4].  

Therefore, we forward model the covariation parameter 𝛽 

and then retrieve it from data. Afterwards we determine the 

best fit between data and model predictions by minimizing 

their difference, in order to estimate the corresponding 

surface roughness parameters 𝑠 and 𝑙 (cf. Fig. 1).  

 

3.1.1. Definition of Forward Model  

The equation for the modeled covariation parameter 

𝛽𝑀𝑜𝑑𝑒𝑙𝑃𝑃
 [-] (cf. Fig. 1) for bare soils (no vegetation cover) 

sensing at L-band is the ratio of Fresnel 𝑓𝐹 and Bragg 

𝑓𝐵 roughness loss terms 𝛽𝑀𝑜𝑑𝑒𝑙𝐻𝐻
=

𝑓𝐹

𝑓𝐵
 [2], [10], which is 

additionally scaled by the conversion coefficient 𝜅𝜀 [-] for 

vertical polarization (𝛽𝑀𝑜𝑑𝑒𝑙𝑉𝑉
=

𝑓𝐹

𝑓𝐵∗𝜅𝜀
) including the 

dielectric constant of soil 𝜀𝑠 [-]. However, sensitivity 

analyses results revealed that the influence of 𝜀𝑠 on 𝛽𝑀𝑜𝑑𝑒𝑙𝑉𝑉
 

is negligible within the proposed approach. 

Calculations of the surface roughness parameters 𝑠 and 𝑙 can 

be done assuming different correlations between the surface 

height at one point and the surface height at another point 

(described by its autocorrelation function (ACF)) [4]. The 

Fresnel and Bragg roughness loss terms can include a 

Gaussian, exponential or power law ACF [11]. The Bragg 

roughness loss term in general is defined by 𝑓𝐵 = 8 ∗
(𝑐𝑜𝑠2𝜃𝑖 ∗ 𝑘2 ∗ 𝑠 ∗ 𝑙)2 ∗ 𝑊(2𝑘𝑠𝑖𝑛𝜃) [10], with the wave 

number 𝑘 =  
2𝜋

𝜆
.  

The Fourier transform of the surface correlation function 

 𝑊(2𝑘𝑠𝑖𝑛𝜃) is defined as the height probability distribution 

function. Assuming a Gaussian ACF, it is given by [10] 

            𝑊(2𝑘𝑠𝑖𝑛𝜃) =  
𝑙2

2
 𝑒(−(𝑘∗𝑙∗𝑠𝑖𝑛𝜃)2) .       (1) 

For an exponential ACF it is defined as [11] 

            𝑊(2𝑘𝑠𝑖𝑛𝜃) = 𝑙2 1

(1+(2∙𝑘∙𝑠𝑖𝑛𝜃)2∙𝑙2)
3
2

 .        (2) 

For describing surface spectra 𝑊(2𝑘𝑠𝑖𝑛𝜃) ranging between 

Gaussian and exponential types, the generalized power law 

spectrum for 2-D rough surfaces is used [11] 

    𝑊𝑛(2𝑘𝑠𝑖𝑛𝜃) ≈

𝑙

𝑛𝑓𝑝

2

2
(𝑝 − 1)

𝑎𝑝
2

𝑏𝑝
2 [1 +

𝑎𝑝
2

𝑏𝑝
2  

(2𝑘𝑠𝑖𝑛𝜃)2(
𝑙

𝑛𝑓𝑝)
2

4
]

−𝑝

,    (3) 

with 𝑓𝑝 = 0.5 ∗ [1 + (
1.5

𝑝
)2],  𝑎𝑝 =

Г(𝑝−0.5)

Г(𝑝)
 and 𝑏𝑝 =

1.17422(𝑝 − 1.01793)(𝑝 − 0.733964)−1 − 0.176782 [approxi-

mation with Mathematica© similar to [12]]. Hereby applies 

that for 𝑝 = 1 the equation is equivalent to the exponential 

ACF, and for 𝑝 = ∞ the equation aligns to the Gaussian 

ACF. Hence, for 1 < 𝑝 > ∞ equation (3) describes 

intermediate power law ACF types with 𝑝 as power 



coefficient [10], [11]. Calculations presented in this study 

delineate results with 𝑝 = 1.75 for field north and 𝑝 =
2.625 for field south, received from in situ roughness 

measurements. To conclude, the Bragg 𝑓𝐵 roughness loss 

term varies for different ACFs through the respective 

surface correlation function (𝑊(2𝑘𝑠𝑖𝑛𝜃)).  

In case of the Fresnel roughness loss term, 𝑓𝐹 varies only 

within the exponent n for varying ACFs, which leads 

to 𝑓𝐹 =  𝑒−4(𝑘∗𝑠∗𝑐𝑜𝑠 𝜃𝑖)𝑛
. For Gaussian n is 2, for exponential 

n is 1, and for the power law ACF n is adjusted to an 

adequate number between 1 and 2 [11]. For calculations 

presented in this study, we re-scaled the received power law 

values 𝑝 in order to determine appropriate n-values, leading 

to n=1.0018 for field north and n=1.0026 for field south. 

Consequently, with the covariation parameter 𝛽𝑀𝑜𝑑𝑒𝑙𝑃𝑃
 

being the ratio of Fresnel 𝑓𝐹 and Bragg 𝑓𝐵 roughness loss 

terms, the equation for the Gaussian ACF, substituting the 

surface correlation function 𝑊(2𝑘𝑠𝑖𝑛𝜃) with (1), leads to: 

𝛽𝑀𝑜𝑑𝑒𝑙𝐺𝑎𝑢𝑠𝑠𝑉𝑉
=  −

𝑓𝐹

𝑓𝐵 ∗  𝜅𝜀
 −

𝑒−4(𝑘𝑠∗𝑐𝑜𝑠 𝜃𝑖)𝑛

4∗(𝑐𝑜𝑠2𝜃𝑖∗𝑘2∗𝑠∗𝑙)2∗ 𝑒(−(𝑘∗𝑙∗𝑠𝑖𝑛𝜃𝑖)
2

) ∗  𝜅𝜀

  (4) 

Due to the fact, that for horizontal polarization 𝜅 = 1 

because of the equality of Fresnel and Bragg reflection 

coefficients [3], the equation hereby is: 

𝛽𝑀𝑜𝑑𝑒𝑙𝐺𝑎𝑢𝑠𝑠𝐻𝐻
=  − 

𝑓𝐹

𝑓𝐵
=  − 

𝑒−4(𝑘𝑠∗𝑐𝑜𝑠 𝜃𝑖)𝑛

4∗(𝑐𝑜𝑠2𝜃𝑖∗𝑘2∗𝑠∗𝑙)2∗ 𝑒(−(𝑘∗𝑙∗𝑠𝑖𝑛𝜃𝑖)
2

)
    (5) 

𝛽𝑀𝑜𝑑𝑒𝑙𝑃𝑃
-equations for the exponential and power law ACF 

differ only in surface correlation function 𝑊(2𝑘𝑠𝑖𝑛𝜃), by 

respectively substituting (2) or (3). 

 

3.1.2. Data-based Retrieval 

The equation for the data-based covariation parameter 𝛽, 

denoted as 𝛽𝐷𝑎𝑡𝑎𝑃𝑃
 [-] for polarization 𝑃, follows according 

to [4], which represents the inversion of the physics-based 

formulation of [3]: 

           𝛽𝐷𝑎𝑡𝑎𝑃𝑃
=

𝐸−1

|𝑆𝑃𝑃|2  =   

𝑇𝑏𝑃
𝑇𝑝ℎ𝑦𝑠

−1

|𝑆𝑃𝑃|2                       (6) 

with E being the emissivity, defined as ratio of the measured 

brightness temperature  𝑇𝑏𝑃 [K] of the surface the physical 

temperature ( 𝑇𝑝ℎ𝑦𝑠 [K]), and |𝑆𝑃𝑃|2 [dB] being the 

measured normalized backscattering coefficient [4].  

 

3.2. Estimation of Surface Roughness Parameters 𝒔 and 𝒍 

 

In order to estimate the surface roughness parameters 𝑠 and 

𝑙 we determined the best fit between model-based and data-

based covariation parameters 𝛽. Therefore, we calculate the 

differences 𝐷𝑃𝑃 (7) between 𝛽𝑀𝑜𝑑𝑒𝑙𝑃𝑃
 and 𝛽𝐷𝑎𝑡𝑎𝑃𝑃

 for the 

horizontal and vertical polarizations (cf. Fig. 1). 

            𝐷𝑃𝑃 = |𝛽𝑀𝑜𝑑𝑒𝑙𝑃𝑃
(𝑠, 𝑙) −  𝛽𝐷𝑎𝑡𝑎𝑃𝑃

|        (7) 

The respective results for 𝐷𝐻𝐻  and 𝐷𝑉𝑉 for each data pixel 

are listed in a matrix with the dimension of the pre-defined 

ranges of roughness parameters 𝑠 and 𝑙 in the forward 

model. If we add up the matrices for both polarizations (8) 

we receive a look-up-table (LUT) where the number of 

columns represents the range of 𝑠 and the number of rows 

represents the range of 𝑙. 

                  {𝑠, 𝑙} = 𝑚𝑖𝑛  (𝐷𝐻𝐻 +  𝐷𝑉𝑉)                       (8) 

And the position of the smallest value in the LUT 

corresponds to the best-fitting values for 𝑠 and 𝑙.  
 

4. ROUGHNESS RETRIEVAL RESULTS 

 

In Figure 2 retrieval results for surface roughness 

parameters 𝑠 and 𝑙 are displayed exemplarily for field south 

including the three types of ACFs.  

 
Figure 2: Retrieved surface roughness results for vertical RMS 

height 𝒔 (top) and horizontal length 𝒍 (bottom) over field south 

for three ACF types, in comparison with mean and maximum 

values of in situ measured surface roughness from the APEX12 

field campaign (horizontal dashed lines). 
 

 

In general, results for the surface roughness parameter 𝑠, 

calculated with a Gaussian ACF, are in the range from 0.75 

to 1.94 cm over field north, and 0.78 to 2.32 cm over field 

south. Results of 𝑠 received for the exponential ACF are in 

the range from 0.86 to 1.36 cm over field north and 0.75 to 

1.39 cm over field south. And finally, results for 𝑠 retrieved 

from the power law ACF are over field north between 0.79 

to 1.39 cm and over field south between 0.93 to 1.68 cm. 

Hence, in summary the lowest values for surface roughness 

parameter 𝑠 are reached with the exponential ACF, but 

overall results received with all ACFs are within a 

comparable range (cf. Fig. 2).  

The situation is completely different for the horizontal 

correlation length 𝑙. As can be seen in Figure 2, only the 



Gaussian ACF delivers comparable results to in situ 

measured correlation length 𝑙. 
This is confirmed by statistics with the RMS-Error being 

3.13 and 3.09 cm for fields north and south, respectively. 

The RMS-Error between calculated and in situ measured 

correlation length 𝑙 assuming an exponential or power law 

ACF is 15 cm in average. Concluding, differences between 

field north and field south, which both have similar surface 

characteristics, are truly minor with the standard deviation 

over field north being 0.27 (𝑠) or 1.12 (𝑙), and over field 

south being 0.24 (𝑠) or 1.12 (𝑙). 
 

5.  FIRST CONLCUSION 

 

In this study, we presented a physics-based approach to 

simultaneously determine surface roughness parameters 

(𝑠, 𝑙) from combined polarimetric radar and radiometer 

signatures. Results showed, that the approach leads to 

physically valid retrievals, and that validations with in situ 

measured roughness values indicate the potential of the 

combined active-passive retrieval. The results delineate a 

smooth surface with 𝑠 over field north being between 0.75 

to 1.94, and over field south being between 0.75 to 2.32 [2]. 

This is in line with observations made during the APEX12 

experiment.  
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