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ABSTRACT 

 

Estimating change in forest biomass is important for 

monitoring carbon dynamics and understanding the global 

carbon cycle. Multi-temporal airborne lidar data has been 

recently used to accurately predict change in forest attributes 

such as aboveground biomass (AGB). In this study, we 

assessed the ability of multi-temporal airborne lidar (2008 

and 2016) and single-date inventory data to estimate forest 

biomass dynamics. To do so, we compared different 

imputation approaches to predict biomass, specifically direct 

(i.e., a model trained by the biomass variable or AGB) and 

indirect (i.e., a model trained by structure variables – basal 

area, tree volume and stem density) approaches. We also 

evaluated the ability of the selected model in temporally 

estimating biomass by relating biomass predictions with 

forest disturbance data. Our results demonstrated that AGB 

can be better predicted using an indirect imputation method 

in which lidar metrics were trained by a structure variable 

(basal area, RMSE = 95.09, R2 = 0.89). While the model was 

developed for the date of inventory measurements (2016), the 

model was successfully applied to predict biomass for a 

historical date (2008). For both years, biomass predictions 

were highly consistent with disturbance history. This study 

further informs the benefits of multi-temporal lidar data to 

estimate forest biomass dynamics in instances when only 

single-date inventory data are available. The work thus can 

support forest researchers and managers in improving their 

scientific and practical tasks in forest management. 

 

Index Terms— Lidar, single-date inventory, biomass 

 

 

1. INTRODUCTION 

 

Forest biomass monitoring is crucial to supporting 

sustainable forest management in the context of climate 

change. From local to global scale, a comprehensive 

reporting of forest biomass dynamics is urgently required to 

inform policy making processes that aim to preserve forest 

ecosystems and reduce greenhouse gas emissions while 

simultaneously accommodating/maintaining human needs. 

Field-based approaches are the most accurate but have 

limited spatial and temporal coverage, especially for large 

jurisdictions or remote areas [1]. To address this problem, 

researchers and practitioners often combine field 

measurements with remote sensing data to estimate forest 

biomass across large areas. Many studies have recently 

demonstrated the ability of lidar (light detection and ranging) 

data in providing high accuracy estimates of forest biomass 

and structure [2-7]. Lidar can be integrated with forest 

inventory data to produce lidar-based biomass maps where 

data is available wall-to-wall [8]. 

The utility of multi-temporal lidar data in forest 

monitoring has been investigated in several previous studies 

[3, 4, 6, 7]. These studies found that repeated airborne lidar 

data can provide accurate and spatially explicit predictions of 

aboveground biomass (AGB) which can be used to 

characterize biomass dynamics and carbon fluxes. Although 

previous studies used various modelling approaches to 

estimate biomass, they often developed model based on 

multi-temporal or re-measured inventory data that temporally 

coincide with lidar data [3, 6, 7]. Repeat inventory data, 

however, are not available in many forest regions. It is a 

reasonably common phenomenon in developing regions that 

only recently have started generating their first iteration of a 

comprehensive National Forest Inventory [9]. Thus, the 

ability of using multi-temporal lidar in combination with 

single-date inventory data for monitoring forest biomass 

dynamics need to be urgently investigated. 

This study investigates the potential of multi-

temporal airborne lidar and single-date inventory data to 

predictively estimate forest biomass dynamics (AGB). To 

achieve this, we first develop and compare different biomass 

imputation models to determine the most accurate method for 

biomass predictions. We then evaluated the ability of the 

selected model in temporally estimating biomass by relating 

biomass predictions with forest disturbance data. The study 

area is located in the Central Forest Management Area 

(FMA) in Victoria, Australia (Figure 1). There are a variety 

of forest types covering this area including ash species 

(mountain ash and alpine ash), messmate and gum eucalypts. 
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Forests within the study area were intensively disturbed by 

fires and logging during the processing period (2008-2016), 

with large fires in 2009 [10]. The study area is also subject to 

routine intensive hardwood timber harvesting. 

  

 

Figure 1. Study area in Victoria, Australia 

 

2. METHODS 

 

Airborne Laser Scanning (ALS) were acquired during 

summer months in 2008 and 2016 by Victorian Department 

of Environment, Land, Water and Planning. Point cloud data 

in 2008 were captured using an Optech ALTM 3100 EA 

sensor at a normal density of 0.96 pulses per m2 while the 

data in 2016 were captured by a Trimble AX60 sensor at a 

normal density of 4.38 pulses per m2. The overlapping areas 

between these two surveys is nearly 350 thousand hectares 

(Figure 1). Raw lidar point cloud data of each survey were 

first classified into either ground or non-ground points using 

an iterative TIN-based method [11]. A suite of 54 common 

lidar vegetation metrics were then computed from both lidar 

datasets based on the height, density and intensity of the lidar 

returns within 20m x 20m grid cells. The selection of the cell 

size aligned with the size of inventory plots (400 m2). Rasters 

of all metrics were created based on a defined common origin 

and pixels exactly overlaid. 

Forest  inventory plot data included 33 permanent 

ground circular plots (400 m2) measured between 2012 to 

2016 as a part of Victorian Forest Monitoring Program or 

VFMP [12]. Each plot consists of multi-measurement 

components taken on large trees, small trees, herbs and 

shrubs, and down woody debris [12]. For each plot, total 

AGB (Mg.ha-1), basal area (BA, m2 per hectare), tree volume 

(VOL, m3 per hectare) and stem density (TD, trees per 

hectare) were calculated [13, 14]. These metrics were then 

used as response variables for biomass imputation models. 

AGB values within inventory plots ranged from 18.1 to 

1036.0 Mg.ha1, with a mean value of 493.6 Mg.ha1.  

The kNN imputation approach (with k=1) based on 

the Random Forest (RF) algorithm was used to develop 

biomass model in this study. This model searches the most 

similar (or the nearest) measured sample and imputes values 

from that sample to a given target (non-measured) sample 

[15]. The similarity between training and target samples is 

evaluated based on a non-Euclidean distance metric 

computed by developing a series of RF models across model 

response variables (one model for each of response variable). 

Prior to model testing, a variable selection was performed 

using the least absolute shrinkage and selection operator 

model (LASSO) [16] to objectively choose the most 

important lidar metrics for predicting the response variables. 

Highly correlated variables were also identified and removed. 

Predictor values were extracted from lidar metrics of 2016. 

We developed and compared eight model scenarios 

to predict AGB using different group of response variables. 

The first model scenario was the direct biomass imputation 

approach since it was trained by the biomass variable (AGB). 

The other seven models were the indirect biomass imputation 

approaches as the nearest neighbour was found based on the 

relationships between predictor variables and forest structure 

variables (combinations of BA, VOL and TD) rather than 

AGB. AGB values of the corresponding training plots were 

not included in these models but were subsequently attached 

as ancillary variables to impute each target pixel [14]. We 

evaluated the accuracy of each model scenario using a leave-

one-out cross validation approach. Imputed biomass values 

were compared to observed values using the root mean square 

error (RMSE), relative RMSE (rRMSE) and the coefficient 

of determination (R2). 

Following model comparisons, we applied the best 

model to estimate biomass mapS for both years 2008 and 

2016. As field data for independently validating biomass 

predictions were not available for both years, we assessed 

biomass predictions by relating them with forest disturbance 

history from 2008  to 2016 [10]. Specifically, we grouped 

representative pixels randomly selected by defined 

disturbance levels and performed the Kruskal-Wallis test [17] 

to evaluate the significance of differences between groups. In 

addition, AGB values of pixels experiencing a stand-

replacing disturbance between 2009 and 2016 were grouped 

by time (years) since disturbance to explore the trend of forest 

biomass recovery. 

 

3. RESULTS 

 

Results of model assessments are shown in Table 1. The 

model with BA as response variable, which was an indirect 

imputation approach, was the most accurate for predicting 

biomass. The model achieved a RMSE value of 95.09 

Mg.ha-1, rRMSE of 0.19 and R2 of 0.89. The direct 

imputation model with AGB as response variable obtained a 

moderate accuracy level while the TD model reported the 

lowest accuracy.  

Examples of biomass predictions for 2008 and 2016, 

and biomass change between the two years are shown in 

Figure 2. Change in biomass due to forest disturbance can be 
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clearly identified on the maps. Results from the Kruskal-

Wallis test (Figure 3) indicate that there were significant 

differences in AGB values between forests grouped by levels 

of disturbance severity (p <2.2e-16). For both years, a higher 

disturbance level was associated with significantly lower 

biomass values. In addition, undisturbed forests had higher 

AGB values than disturbed forests. Predicted AGB values in 

2016 were generally consistent with time since disturbance 

(Figure 4), with an increased trend in biomass values for a 

higher number of years since disturbance. However, AGB 

values in 2016 were much lower than that in 2008, which 

were considered as pre-disturbance values. 

Table 1. Biomass imputation model accuracies (BA = basal 

area, VOL = tree volume, TD = stem density) 

Model scenario RMSE rRMSE R2 

AGB 129.03 0.26 0.83 

BA 95.09 0.19 0.89 

VOL 172.51 0.35 0.80 

TD 194.77 0.39 0.75 

BA-VOL 115.32 0.23 0.87 

BA-TD 149.89 0.30 0.82 

VOL-TD 139.07 0.28 0.83 

BA-VOL-TD 135.59 0.27 0.84 

 

 

Figure 2. Maps biomass predictions of 2008 (a) and 2016 

(b), and biomass change between the two years (c). 

 
Figure 3. Distribution of biomass values according to 

disturbance levels, with results from the Kruskal-Wallis test 

(**** is noted for p < 0.001). 

 

Figure 4. Trend of AGB values (2016) by time since 

disturbance, in comparison with pre-disturbance values 

(2008). The analysis was done for pixels with stand-replacing 

disturbance during 2009-2016.  

 
4. DISCUSSION 

 

Our results of model comparisons indicate that AGB can be 

better predicted from lidar data using an indirect imputation 

method in which lidar metrics were trained by the basal area 

variable (BA). The biomass variable was not included in the 

model but were then indirectly imputed as an ancillary 

variable. Although the results could be different when testing 

in another study area, similar comparisons are necessarily to 

determine the best approach for predicting forest biomass 

from airborne lidar data. The findings from this work are 

consistent with results from our previous study when we 

compared the biomass imputation models using Landsat 

time-series [14]. 
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Our results also indicate the potential of using an 

imputation model developed from single-date inventory data 

for temporally predicting forest biomass from lidar data. 

While the model predictors were extracted from the lidar 

dataset from 2016, the model was successfully applied to 

predict biomass for a historical date (2008). Similar to 2016, 

when field data are available, biomass predictions of 2008 

were highly consistent with disturbance history (Figure 3). It 

is expected when the trend of biomass values in 2016 

increased by time since disturbance (Figure 4). Higher pre-

disturbance values (2008) are also reasonable as a nine-year 

duration is generally not long enough for a full biomass 

recovery following a stand-replacing disturbance [18]. 

Further map validations using temporal inventory data, 

unfortunately not available in our case study, should be 

conducted in future research.  

 

5. CONCLUSION 

 

Overall, multi-temporal airborne lidar and single-date 

inventory data can be combined to efficiently estimate forest 

biomass dynamics. Different imputation approaches were 

compared to determine the most accurate model to predict 

biomass. AGB can be better predicted using an indirect 

imputation method in which lidar metrics were trained using 

a structure variable (basal area). The selected model proved 

its ability to successfully predict biomass for a historical date. 

For both modelled years, biomass predictions were highly 

consistent with disturbance history. This work represents a 

first in linking single-date inventory with multi-temporal 

lidar data to estimate forest biomass dynamics and has 

potential to support forest researchers and managers in 

improving their scientific and practical tasks in forest 

management. 
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