
EXPLOITATION OF ESA AND NASA HERITAGE REMOTE SENSING DATA FOR 

MONITORING THE HEAT ISLAND EVOLUTION IN CHENNAI WITH THE GOOGLE 

EARTH ENGINE 

 

Francesca Cecinati, Donato Amitrano, Lemia Benevides Leoncio, Elvis Walugendo, Raffaella Guida, 

Pasquale Iervolino, Sukumar Natarajan 

 

Department of Architecture and Civil Engineering, University of Bath, Bath, UK 

Surrey Space Centre, University of Surrey, Guildford UK 

Nuffield Research Placement, UK 
 

ABSTRACT 

Abstract - The Urban Heat Island (UHI) effect is defined as 

an increase of the air and surface temperature inside a city 

compared to surrounding rural areas. This increment can be 

of several degrees, thus exposing populations to serious 

health risks, especially in hot developing countries, where 

the majority of the world’s megacities is located. The UHI 

effect has been widely studied in the past with local methods 

employing field sensors. The use of satellites moved the 

analysis from local to city scale, but long-term investigations 

have been so far limited by storage and computational 

capacities. In this work, both ESA and NASA heritage data 

are used to study the temporal evolution (2003-2017) of the 

UHI of the city of Chennai, India. The Google Earth Engine 

is exploited to process the available large dataset in a 

reasonable time. Results show that the UHI of Chennai has 

grown over time and that its main drivers are the average 

temperature and the city expansion. 

 

Index Terms— Heritage data, MODIS, Urban Heat 

Island, Google Earth Engine 

 

1. INTRODUCTION 

In 2050, 75% of the world population will live in cities [1]. 

City expansion is likely to strengthen the urban heat island 

(UHI) effect. This term indicates an increase of the surface 

and air temperature of an urban area compared to 

surrounding suburban and rural areas [2]. The UHI is due to 

the introduction of artificial materials that change the 

radiative, thermal, moisture conditions and emissivity of 

surfaces [3] and is cause of severe heat stress for the 

populations. The increase of temperature affects both the air 

in the urban boundary layer (Atmospheric Urban Heat Island 

– AUHI) and the urban surfaces (Surface Urban Heat Island 

– SUHI) [4]. In general, the UHI intensity depends on both 

environmental/climatic [5] and intrinsic urban factors like 

city shape, density, and extension [6].  

Past work on UHI at city scale widely used temperature 

from ground stations, situated in urban and suburban areas 

[7]. Since the ‘90s, the increasing availability of satellite 

acquisitions moved the study of SUHI toward the 

exploitation satellite technologies [8]. In particular, starting 

from 2000, the NASA Moderate-Resolution Imaging 

Spectroradiometer (MODIS) sensor has been used to 

investigate the UHI effect. MODIS Land Surface 

Temperature (LST) products are available at 1 km 

resolution, twice per day and reach an accuracy of 1K or 

better [9]. However, this large dataset, has not been fully 

exploited in the past due to technological limitations. In this 

work, the temporal evolution of the UHI of the city of 

Chennai, India (which represents an example of a large 

expanding city in a hot developing country), is investigated 

using all the available cloud-free daily MODIS LST 

acquisitions in the time frame 2003-2017. Temperature data 

are integrated with temporal urban area maps generated from 

both heritage and actual data delivered by the European 

Space Agency (ESA) Synthetic Aperture Radar (SAR) 

sensors ERS-1/2, ENVISAT, and Sentinel-1. Finally, UHI 

data are correlated with some environmental/climatic and 

urban variables, like the average temperature, the city size, 

the presence of vegetation, and the influence of El Niño, to 

find its main drivers.   

The available dataset has been processed by exploiting 

the computational power offered The Google Earth Engine 

(GEE). It is a cloud platform developed by the private 

company Google, freely accessible for research purposes. It 

offers a developing environment with online access to 

petabytes of satellite and geographic data, access to Google 

computational capacity, and a set of specialized libraries for 

the optimal handling of big geospatial data [10]. The 

presented work has been supported by the work of high-

school students doing a Nuffield Research Placement, 

therefore a simplified methodology has been used. 

 

 

 



2. METHODOLOGY 

The main objectives of this work can be summarized as 

follows: 

1. Identify the evolution of the Chennai urban area 

using ESA SAR images, producing a multi-

temporal urban map; 

2. Use the GEE to combine MODIS LST daily 

products (MOD11A2.006) and the multi-temporal 

urban map to estimate the evolution of the SUHI; 

3. Understand what the main drivers for the SUHI 

evolution are through a regression. 

To this end, the methodology described by the flowchart 

represented in Figure 1 has been conceived. It draws from 

both ESA and NASA archives. ESA SAR data acquired by 

ERS-1/2, ENVISAT, and Sentinel-1 sensors are used in a 

multisensory fusion environment to retrieve the temporal 

evolution of the Chennai urban agglomerate. MODIS LST 

products are directly ingested in the GEE platform, which 

hosts the assimilation of SAR-derived data into the UHI 

estimation model and the regression analysis aiming at 

establish its main drivers.   

 

 

Fig. 1. Implemented workflow for the estimation of the UHI 

and the understanding of its main drivers 

3. CHENNAI CITY EXPANSION 

Long-term monitoring of the urban area is implemented by 

using SAR acquisitions of different sensors (ERS-1/2, 

ENVISAT, Sentinel-1) spanning from 1992 to 2017. Images 

were combined in bi-temporal multisensory color-

composites according to the guidelines illustrated in [11] 

and the urban area extracted using dictionary-based semantic 

clustering principles, as discussed in [12]. The processing 

output, displayed in Figure 2, is a classified temporal urban 

map in which each class represents the state of the city for a 

given year.    

4. UHI ESTIMATION 

MODIS LST products are available only since 2000. The 

first available urban map after 2000 is in 2003. Therefore, 

the time frame 2003 – 2017 was considered in this study for 

the investigation of the evolution of Chennai’s SUHI. 

The objective of this work is to understand how the SUHI 

has evolved over the years, regardless of the daily and 

seasonal oscillation. For this reason, the average LST, using 

all the available cloud-free MODIS LST acquisitions for 

each year corresponding to an available urban map, was 

computed. The average is calculated on a window of 3 years 

centered in the one of interest in order to avoid excessive 

inter-annual variability. The GEE platform allows for the 

handling and processing of this huge amount of data (about 

570 MODIS images images overall) in a few minutes. 

 

 

Fig. 2. Temporal urban area map of Chennai (India). Each 

color corresponds to the state of the city for a given year, 

starting from 1992 up to 2017. 

Each average LST map is then segmented into urban/not 

urban classes according to the available SAR-derived map, 

ingested into the GEE. In Figure 3, an example relevant to 

the year 2017 is shown. In this picture, the left panel shows 

the average LST for pixels classified as urban. The right 

panel shows the average LST for pixels classified as not 

urban. Finally, the SUHI is calculated as follows 

 

          SUHI = <LST>urban – <LST>not-urban                  (1)  

 

where the symbol <*> stands for the temporal mean 

operator and LSTurban and LSTnot-urban for the LST measured 

by MODIS for urban and not urban pixels, respectively. This 

operation is repeated for all the available urban maps. The 

(linearly interpolated) estimated average SUHI is 



represented by the black curve in the graphs depicted in 

Figure 4. 

5. UHI REGRESSION MODEL 

After calculating the average SUHI for the over the time, the 

factor most affecting its evolution were investigated. In 

particular, the following factors were considered: 

 Average temperature Tmean over the temporal 

window. Rural temperature is considered to avoid 

the UHI effect; 

 City expansion, quantified by the maximum radius 

R around the city center where the urban density is 

at least 30%; 

 Vegetation, quantified by the Normalized 

Difference Vegetation Index (NDVI) calculated 

from Landsat 7 images averaged in the same time 

window used to estimate the average SUHI; 

 El Niño Southern Oscillation, quantified by the 

average Southern Oscillation Index (SOI) over the 

aforementioned temporal window. The SOI is 

defined as the annual standardised monthly mean 

sea level pressure anomalies at Tahiti, French 

Polynesia and Darwin, Australia [13]. 

The temporal evolution of the explanatory factors is 

shown in Figure 5, together with the temporal evolution of 

the SUHI. A linear regression is performed between the 

SUHI time series and each of the factors. Results are 

reported in Table 1. The average temperature showed a 

strong inverse correlation with the SUHI and a strong direct 

correlation with the city expansion. The SOI showed a 

significant, but not strong direct correlation with the SUHI. 

The NDVI did not show a significant correlation with the 

SUHI evolution. A multiple linear regression between the 

SUHI and the three most significant explanatory factors 

(Tmean, R, and SOI) and between the SUHI and the most 

significant two explanatory factors (Tmean and R) has been 

also implemented. Results are reported in Table 2. They 

show that the SOI does not add a noticeable contribution 

explaining the SUHI variability. 

Table 1. Pearson’s correlation P and significance at 95% 

confidence S95% for the regression between the estimated 

average SUHI and the four considered explanatory factors. 

 P S95%  

Tmean -0.710 Yes 

SOI 0.682 Yes 

R 0.842 Yes 

NDVI -0.342 No 

 Table 2. Result of the multiple linear regression between 

the average SUHI and the considered explanatory factors. 

 P S95%  

Tmean, R -0.710 Yes 

Tmean, R, SOI 0.682 Yes 

 

6. CONCLUSIONS 

Urban heat islands represent a serious consequence of 

increasing urbanization and is expected to be furtherly 

exacerbated by the increasing temperatures our planet is 

experiencing. In this work, heritage remote sensing data 

were exploited for estimating the temporal evolution of the 

Urban Heat Island of the city of Chennai (India) using the 

Google Earth Engine. Results show an increasing trend of 

the average surface urban heat island effect. It is well 

explained by the city growth and by the average 

temperature, for which strong positive and negative 

correlation have been found. The Google Earth Engine 

proved to be a precious resource to process long time series, 

 
Fig. 3. Average LST distribution for the year 2017 in the Chennai area according to the SAR-derived urban/not urban 

segmentation. 

 



allowing for the development of efficient algorithms that are 

re-applicable to other case studies with negligible 

computational time and without necessity of huge storage 

units thanks to the possibility to move the processing in a 

cloud environment. Furthermore, its simplicity allows non-

expert users, like high-school students from the Nuffield 

Research Placement, to conduct meaningful remote sensing 

research. 
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Fig. 4. Temporal evolution of the estimated SUHI and of the considered explanatory factors, i.e. average temperature, 

urban radius, southern oscillation index, and vegetation. 

 


