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ABSTRACT

Radar and Optical Satellite Image Time Series (SITS) are
sources of information that are commonly employed to mon-
itor earth surfaces for tasks related to ecology, agriculture,
mobility, land management planning and land cover monitor-
ing. Many studies have been conducted using one of the two
sources, but how to smartly combine the complementary in-
formation provided by radar and optical SITS is still an open
challenge. In this context, we propose a new neural archi-
tecture for the combination of Sentinel-1 (S1) and Sentinel-
2 (S2) imagery at object level, applied to a real-world land
cover classification task. Experiments carried out on the Re-
union Island, a overseas department of France in the Indian
Ocean, demonstrate the significance of our proposal.

Index Terms— Satellite Image Time Series, Deep Learn-
ing, multi-source, data fusion, land cover classification

1. INTRODUCTION

Modern Earth Observation (EO) systems provide huge vol-
umes of data every day, involving programs that produce
freely available multi-sensor satellite images at high spa-
tial resolution with low temporal revisit period. Satellite
Image Time Series (SITS) are particularly useful for tasks
such as land cover classification [1] and natural habitat mon-
itoring [2]. A notable example is represented by the two
main ESA Sentinel missions (Sentinel-1 and -2) that provide
optical (multi-spectral) and radar imagery at 10 m spatial
resolution with revisit time of 6 and 5 days respectively. An
open challenge in the remote sensing community [3] is how to
efficiently combine the complementary information coming
from these sensors, namely, the properties of surface mate-
rials provided by the optical sensor (S2) and the structural
characteristics of landscape elements provided by the radar

∗Thanks for the GEOSUD project with reference ANR-10-EQPX-20,
the Programme National de Télédétection Spatiale (PNTS, http://www.
insu.cnrs.fr/pnts ), grant noPNTS-2018-5 for funding.

sensor (S1). In this context, we propose a new deep learning
architecture, named OD2RNN (Object-Based two-Branch
RNN Land Cover Classification), to manage multi-temporal
and multi-sensor data (radar and optical satellite image time
series) at object-level to leverage the complementarity be-
tween these two different types of information. Working at
object level instead of pixels has two main advantages: i)
objects represent more representative and potentially feature-
rich pieces of information and ii) object based approaches
facilitate data analysis scale-up since, for the same area, the
number of objects is usually smaller than the number of pixels
by several order of magnitude.

2. DATA DESCRIPTION

The analysis is carried out on the Reunion Island, a French
overseas department located in the Indian Ocean. The dataset
consists of a time series of 34 S2 images and a time series
of 24 S1 images both acquired between April 2016 and May
2017. For S2, we used level-2A products by the THEIA
pole 1. Here, we only use bands at 10m, in the blue, green,
red and near infrared spectrum (resp. B2, B3, B4 and B8).
A preprocessing was performed to fill cloudy observations
through a linear multi-temporal interpolation over each band
(cf. Temporal Gapfilling [1]), and the NDVI radiometric index
was calculated for each date [1] (5 variables for each times-
tamp). For S1, images are acquired in TOPS mode with dual-
polarization (VV+VH). The backscatter images were gener-
ated and radiometrically calibrated using parameters included
in the S1 SAR header, then coregistered with the S2 time se-
ries. The pixel size of the orthorectified image data is 10 m.
After geocoding, all backscatter images are converted to the
logarithm dB scale, normalized to values between 0-255 (8
bits). The spatial extent of the Reunion Island site is 6 656
× 5 913 pixels. The field database was built from various

1Data are available via http://theia.cnes.fr, preprocessed in
surface reflectance via the MACCS-ATCOR Joint Algorithm [4] developed
by the National Centre for Space Studies (CNES).
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sources (see [3] for details) and is available in GIS vector for-
mat as a collection of class attributed polygons that have been,
successively, converted in raster format at the S2 spatial res-
olution (10m). The final ground truth includes 2 656 objects
distributed over 13 classes (Table 1).

Class Label # Polygons # Objects
0 Crop cultivation 380 635
1 Sugar cane 496 1205
2 Orchards 299 640
3 Forest plantations 67 167
4 Meadow 257 786
5 Forest 292 1016
6 Shrubby savannah 371 739
7 Herbaceous savannah 78 143
8 Bare rocks 107 250
9 Urbanized areas 125 1499
10 Greenhouse crops 50 163
11 Water surfaces 96 159
12 Shadows 38 60

Table 1: Characteristics of the Reunion Island Dataset

Our purpose is to perform an object-oriented analysis of
the Reunion Island exploiting the available ground truth data.
To this purpose, we use a SPOT6/7 image, acquired on April
6th 2016 and originally consisting of a 1.5 m panchromatic
band and 4 multispectral bands (blue, green, red and near in-
frared) at 6 m resolution. The multispectral image has been
resampled at 10 m (the same resolution of S2 images) us-
ing bicubic interpolation. Finally, the resulting image has
been segmented via the Large Scale Generic Region Merg-
ing [5] remote module of the Orfeo Toolbox toolkit 2 obtain-
ing 167 319 segments. The obtained segments where spatially
intersected with the ground truth data to provide radiometri-
cally homogeneous class samples and 7 462 labeled segments
of comparable sizes are finally obtained. To integrate infor-
mation from the time series, each object is then attributed with
the mean of the corresponding pixels over the selected bands
and indices, (Blue, Green, Red, NIR and NDVI for S2, VV
and VH for S1) for all the available timestamp, achieving a
total of 34 ∗ 5 + 24 ∗ 2 = 218 variables per object.

3. OBJECT-BASED TWO-BRANCH RNN LAND
COVER CLASSIFICATION

Figure 1 depicts the proposed OD2RNN deep learning ar-
chitecture for the multi-source satellite image time series
classification process. Inspecting the model, We can observe
that, structurally, our architecture has two twin streams: one
for the radar time series and one for the optical time series.
The output of the model is a land cover classification class
for each pair (radar/optical) time series. Each stream of the
OD2RNN architecture can be roughly decomposed in three
parts: i) data preprocessing and enrichment ii) time series

2https://www.orfeo-toolbox.org/CookBook/
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Fig. 1: Visual representation of the OD2RNN Deep Learn-
ing Architecture.

analysis and iii) multi-temporal combination to generate per-
source features. Finally, the radar (blue stream) and optical
(green stream) information are combined together. More in
detail, the feature extracted from each stream (rectangle with
rounded corners) are concatenated and directly leveraged to
produce the final land cover classification. We name such
learned features optfeat (resp. radarfeat) to indicate the
output of the optical (resp. radar) stream.

Considering each stream of our model, we can identify
three main stages. The first one is represented by two stages
of fully connected (FC) layers that take as input one time
stamp of the object time series (radar or optical) and combine
the input data. Such stage allows the architecture to extract an
useful input combination for the classification task enriching
the original data representation. The non-linear transforma-
tion associated to the FC layer is the ReLU non linear activa-
tion function [6]. The second stage is constituted by a Gated
Recurrent Unit [7] (GRU) a kind of Recurrent Neural Net-
work. Unlike standard feed forward networks (i.e. CNNs),
RNNs explicitly manage temporal data dependencies since
the output of the neuron at time t − 1 is used, together with
the next input, to feed the neuron itself at time t. Further-
more, this approach explicitly models the temporal correla-
tion present in the object time series and it is able to focus
its analysis on the useful portion of the time series discarding
useless information. The third and last stage is implemented
via neural attention [8] on top of the outputs produced by the
GRU model. Attention mechanisms are widely used in au-
tomatic signal processing (1D signal or language) and they
allow to join together the information extracted by the RNN
model at different time stamps via a convex combination of
the input sources. We adopt the same attention mechanism
employed in [3]. Finally, once each stream has processed the
corresponding time series information, the concatenation of
the extracted radar and optical features is used to perform
the classification. To further strengthen the complementar-
ity as well as the discriminative power of the learned features
for each stream, we adapt the technique proposed in [9], in-

https://www.orfeo-toolbox.org/CookBook/


cluding an auxiliary classifier for each set of learned features
(optfeat and radarfeat). The aim is to stress the fact that the
learned features need to be discriminative alone (i.e., indepen-
dently from each other).. Then, the learning process involves
the optimization of three classifiers at the same time: one spe-
cific to optfeat, one related to radarfeat and one that consid-
ers the concatenation [radarfeat, optfeat]. The cost function
associated to our model is :

Ltotal = .5 ∗ L1(radarfeat) + .5 ∗ L2(optfeat)

+ Lfus([radarfeat, optfeat]) (1)

where Li(feat) is the loss function (in our case the Cross-
Entropy function) associated to the classifier fed with the fea-
tures feat. We empirically weight the contribution of the aux-
iliary classifier with a weight of .5 to enforce the discrimina-
tive power of the per-source learned features. The final land
cover class is derived combining the three (Softmax) classi-
fiers with the same weight schema employed in the learning
process. In addition, dropout (with a drop rate equal to 0.4) is
employed for the GRU unit and between the two Fully Con-
nected layers. The model is learned end-to-end.

4. EXPERIMENTAL EVALUATION

In this section, we present and discuss the experimental re-
sults obtained on the study site introduced in Section 2. To
evaluate the behavior of OD2RNN , we compare its perfor-
mance with the one of a Random Forest classifier learned over
radar, optical and optical/radar data. We name such competi-
tors: RF (S1), RF (S2) and RF (S1, S2), respectively. The
values are normalized, per band (resp. indices) considering
the time series, in the interval [0, 1].

To learn OD2RNN parameters we use the Adam opti-
mizer [10] with a learning rate equal to 1 × 10−4. The train-
ing process is conducted over 1000 epochs with a batch size
equals to 32. On average, each train epoch takes 11 seconds.
The number of hidden units for the RNN module is fixed to
1 024 (resp. 512) for the optical (resp. radar) branch while, we
employ 32 and 64 neurons for the first and the second Fully
Connected layers for each stream. We divide the dataset into
three parts: training, validation and test set with a proportion
of 50%,20% and 30% of the objects, respectively. Training
data are used to learn the model. The model that achieves
the best accuracy on the validation set is subsequently em-
ployed to classify the test set. For the RF models, we opti-
mize the model via the maximum depth of each tree (in the
range {20,40,60,80,100}) and the number of trees in the for-
est (in the set {100, 200, 300,400,500}). Experiments are
carried out on a workstation with an Intel (R) Xeon (R) CPU
E5-2667 v4@3.20Ghz with 256 GB of RAM and four TITAN
X GPU. The assessment of the classification performances
is done considering global precision (Accuracy), F-Measure

and Kappa measures. For each evaluation metric, we report
results averaged over ten random splits performed with the
previously presented strategy.

F-Measure Kappa Accuracy
RF (S1) 65.80 ± 0.85 0.6297 ± 0.0096 68.03 ± 0.82
RF (S2) 86.10 ± 0.72 0.8442 ± 0.0082 86.40 ± 0.71
RF (S1, S2) 81.26 ± 0.85 0.7936 ± 0.0103 82.01 ± 0.90
OD2RNN 89.48 ± 0.36 0.8811 ± 0.0041 89.59 ± 0.36

Table 2: F-Measure, Kappa and Accuracy considering
OD2RNN and different competing methods.

Table 2 reports the average results of the different meth-
ods on the Reunion Island dataset. We can observe that,
considering the average behavior, OD2RNN clearly outper-
forms all Random Forest approaches. The best competitor
is represented by the model leveraging only the optical data
(RF (S2)). Not surprisingly, using only radar information
(RF (S1)) provides the worst performances considering the
land cover nomenclature on the study site. Interestingly, RF
performance on the combined data (RF (S1, S2)) is lower
than the one obtained exploiting only optical information
(RF (S2)).

Table 3 reports the per-class F-Measure obtained by each
method. Here, we can observe that OD2RNN achieves the
best performance on ten classes over thirteen. Of particular
interest is the behavior obtained on the class 0–Crop Culti-
vation, where our approach shows a gain of almost 10 points
over the best competitor (RF (S2)). Considering classes 7–
Herbaceous savannah, 11–Water surfaces and 12–Shadows,
the best scores are reported by RF (S2). Regarding the first
two classes, OD2RNN achieves comparable results w.r.t.
RF (S2), while on the latter the difference is higher. How-
ever, the 12 –Shadows class is not a real land cover class and it
was manually introduced by field experts since some areas of
the island are constantly covered by shadows at S2 acquisition
times. Indeed, the nomenclature was set up for optical-based
classification since the optical signal can be affected by shad-
owing effects while this is not the case for the radar. This also
explains why RF (S1) has serious issues on such particular
class.

Figure 2 reports two representative map classification
details corresponding to the classification produced by the
RF (S2), RF (S1, S2) and OD2RNN methods. To sup-
ply a reference image with natural colors, we here use the
SPOT6/7 image used for object layer extraction. The first
detail (top of the figure) focuses on a zone mainly character-
ized by Orchards cultivation. Here, we can note that RF (S2)
tends to confuse 0–Crop Cultivation and 2–Orchards classes,
with the latter often overestimated to the detriment of the
former. Such classes are hardly distinguishable on optical
imagery at 10 m resolution. This effect is reduced on the
map provided by OD2RNN , probably due to the fact that
it effectively exploits the information on the canopy struc-
ture provided by radar imagery. The second detail (bottom



Method 0 1 2 3 4 5 6 7 8 9 10 11 12
RF (S1) 56.15 80.04 58.16 40.76 78.15 63.27 46.95 45.51 78.85 75.8 12.25 81.44 0.0
RF (S2) 74.79 90.95 81.29 77.15 81.92 88.67 85.78 74.16 82.34 94.19 60.29 93.94 93.02
RF (S1, S2) 69.35 89.85 75.76 57.74 82.83 82.26 78.13 62.87 72.73 92.14 32.22 89.38 83.58
OD2RNN 84.27 93.64 87.69 82.61 90.8 89.82 87.27 73.72 83.93 94.94 68.44 91.37 82.31

Table 3: Per-Class F-Measure

VHSR Image RF(S2) RF(S1S2) OD2RNN

(a) (b) (c) (d)

(e) (f) (g) (h)
Crop Cultivations Sugar cane Orchards Forest plantations Meadow Forest Shrubby savannah

Herbaceous savannah Bare rocks Urban areas Greenhouse crops Water Surfaces Shadows

Fig. 2: Qualitative investigation of Land Cover Map details produced by RF(S2), RF(S1,S2) and OD2RNN on two different
zones (from the top to the bottom): i) an agricultural and ii) the volcano area. .

of the figure) depicts the Piton de la Fournaise volcano on
the eastern side of the island. The area between the volcano
and the sea is often affected by the presence of clouds at S2
acquisition time. Due to this phenomenon, Random Forest
models generate vast erroneous areas, and even RF (S1, S2)
is not able to balance out the lack of S2 imagery by exploiting
S1 information. Conversely, the error is significantly reduced
when using OD2RNN , demonstrating its ability to intelli-
gently combine radar and optical time series, thus resulting in
a better visual classification. Complete land cover maps are
available online 3.
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