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ABSTRACT

In this paper, the authors aim to combine the latest state
of the art models in image recognition with the best pub-
licly available satellite images to create a system for
landslide risk mitigation. We focus first on landslide de-
tection and further propose a similar system to be used
for prediction. Such models are valuable as they could
easily be scaled up to provide data for hazard evaluation,
as satellite imagery becomes increasingly available. The
goal is to use satellite images and correlated data to en-
rich the public repository of data and guide disaster re-
lief efforts for locating precise areas where landslides
have occurred. Different image augmentation methods
are used to increase diversity in the chosen dataset and
create more robust classification. The resulting outputs
are then fed into variants of 3-D convolutional neural
networks. A review of the current literature indicates
there is no research using CNNs (Convolutional Neu-
ral Networks) and freely available satellite imagery for
classifying landslide risk. The model has shown to be ul-
timately able to achieve a significantly better than base-
line accuracy.

Index Terms— Landslide prediction, image pro-
cessing, Sentinel-2, deep learning, machine learning,
CNNs (Convolutional Neural Networks), geohazard
monitoring

1. INTRODUCTION

Landslides are an increasingly significant concern in a
world of increasing climate volatility, and there have
been a number of efforts to improve the predictive tech-
nology around using different methods to improve land-
slide monitoring techniques [1, 2]. Landslides often

happen without clear warning. Consequences are catas-
trophic in terms of human losses. Governments are
therefore interested in collaborating with researchers
to detect landslides and mitigate their effects. So far,
methodological investigations have been largely fo-
cused on using labor-intensive preprocessing techniques
on less than half a dozen landslides [3].

Authors tried to enhance the work of feature esti-
mation accomplished in [4] and [5], moving toward the
involvement of machine learning techniques, such as lo-
gistic regression and Support Vector Machines (SVM)
[6], used with good results for landslide prediction as
demonstrated by a review of the relevant literature [7,8],
[9, 10]. However, these methods often rely on exact fea-
tures of the geographic region such as elevation, gradient
of the slope and soil type or extensive preprocessing of
the images. A review of the current literature indicates
there is no research using CNNs (Convolutional Neu-
ral Networks) and freely available satellite imagery for
classifying landslide risk. Such a model would require
fewer features and less labor-intensive preprocessing of
the data, yielding a system that requires lower additional
effort with each set of images.

This paper aims to create such a system for the ac-
curate detection of landslides. The selection of image
recognition model is inspired in part by Krezhevsky
et al. paper [11] on Convolutional Neural Networks,
but also prior work using 3-dimensional convolutions,
which allows the model to learn the dimension of
time [12]. To the best of the authors’ knowledge, com-
bination of CNNs (Convolutional Neural Network) and
public landslide satellite imagery has not been published
and hence this paper serves as a novel contribution to
the field of geohazard assessment.
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2. USE OF DATA

The primary focus of this paper has been on catastrophic
to large landslides (as defined by the Landslide cata-
log) that have occurred from 2015 to 2017, due to data
availability (explained below). The NASA Open Data
Global Landslide Catalog [13] was used as the starting
point for landslides that fit the criteria. It contains co-
ordinates, scale (ranging from ’catastrophic’ to ’small’),
date, among other information. Initially, both Sentinel-1
and Sentinel-2 data were analysed for usability. How-
ever, Sentinel-1 images proved to be computationally
prohibitive due to the large amount of preprocessing re-
quired. Therefore, it was decided that Sentinel-2 data
were better for creating a large database, necessary for
training a deep learning model [14].

Since the ESA Copernicus Sentinel-2 [15] optical
images suited our purposes most closely, and because
the launch of Sentinel-2A happened in June 23, 2015,
we only analyzed landslides that occurred after June,
2015. Furthermore, since the catalog ends in Septem-
ber, 2017, we did not look at landslides that happened
after this date. The landslides were then filtered by size,
focusing on the largest first, so that the model could
more easily learn an internal representation of a land-
slide. Only landslides where the location was known
with an accuracy of 1 km or less were used. Images that
included noticeable cloud coverage were also discarded.
Among thousands of landslides available in the Global
Landslides Catalog, twenty landslides were chosen for
preliminary testing. A sample is shown in Table 1.

Table 1. A sample of landslides of interest

Location Landslide date Landslide size Type Latitude Longitude
Greenland (Hill near Nuugaatsiaq) 06/17/2017 catastrophic landslide 71,53659933 -53,20874578
California(Mud Creek) 05/20/2017 very large landslide 35,865628 -121,43238
China (Village of Xinmo) 06/24/2017 catastrophic debris flow 32,08087401 103,6656168
Indonesia (Jalan Melati) 08/19/2016 very large mudslide -6,311708 106,801076
Colombia (Mocoa) 03/25/2017 very large landslide 1,15189804 -76,639923
Switzerland (Piz Cengalo) 23/08/2017 very large debris flow 46,29694 9,595744
UK (Bridgeport and West Dorset) 29/06/2017 very large landslide 50,70838 -2,75802
Bosnia & Herzegovina (Kakanj) 24/02/2017 very large landslide 44,14354 44,14354

3. PROPOSED MODEL

The model is a convolutional neural network, which per-
forms a set of differentiable mathematical operations on
the input values, described by the model’s set of weights,
to produce an output. Initially the weights are random-
ized, and the network is then trained to minimize the loss
function. The loss function in this case is the negative

log-likelihood loss, described by:

L(X) = −
∑

x,y∈X
p(x) · log(y)+ (1− p(x)) · log(1− y)

(1)
Where X is our training dataset of image, label pairs
and p(x) is the prediction of our model for input x. We
use the backpropagation algorithm and the Adam opti-
mizer [16] to repeatedly update the weights in a direc-
tion that minimizes the loss function. The model pro-
posed is illustrated in Fig. 1. First, it extracts remote
sensing data, in the form of Sentinel-2 images and also
historical weather data (rainfall, humidity, cloud cover),
for preprocessing.
During the preprocessing stage, a single landslide im-
age is made into multiple images, by taking a randomly
sampled window of the original image that still is guar-
anteed to contain the landslide.

After the preprocessing stage, the images are fed
into the CNN model. The CNN contains 8 learned
layers. A single input example consists of two images
(one image before the landslides, one image after the
landslide), each of size 512 by 512 pixels, and an extra
dimension of size 5 for the Sentinel-2 bands. We used
Bands 2, 3, 4, 8 and 12 for the level of resolution and
independent information they provide. This forms a
2x512x512x5 input which is then processed using 3D-
convolutions. Additionally, image rotations and flipping
were used to increase the number of images to train on.
This contributed significantly to the model’s gains in
accuracy.

4. PROPOSED ANALYSIS

In order to train the machine learning algorithms, we
downloaded several images for each landslide (both be-
fore and after the landslide). This allows us first to create
multiple pairs to train the detection model, and later to
potentially use the sequence of images to train the pre-
dictive model. We also used pairings of two images be-
fore the landslide as examples where landslides did not
occur. The constellation of two satellites (Sentinel-2A
and Sentinel-2B) allows us to reach a 5-day geometric
revisit time [17]. The images were preprocessed using
the Google Earth Engine developer console [18], where
the images could be filtered by cloud cover and cropped
by coordinates. An example of the completely processed
images is shown in the Fig. 2, where Sentinel-2 images
acquired before and after the landslide in Xinmo (China)



Fig. 1. Diagram of model

are shown. In the second image the landslide is clearly
detectable and even if a cloud is present, the analysis can
still be done because the cloud does not cover the area
of interest. It’s worth to say that the images may appear
different just because taken in different light conditions.

Fig. 2. An example of Sentinel 2 image acquired before
(a) and after (b) the landslide in Xinmo, China (Table 1)

The model was trained on 20 different landslides,
using a 5-fold cross validation method [19] to corrobo-
rate on 4 landslides at a time. For evaluating the accu-
racy we decided to use balanced accuracy, which is the
mean of the accuracies on examples from each class (in

our case, yes landslide and no landslide). For example
a network that predicts every example to be a landslide
would achieve a 100% accuracy on landslides and 0%
accuracy on images without a landslide, resulting in a
balanced accuracy of 50% regardless of the relative fre-
quencies of the classes. We trained our network for 120
epochs with each training set and at the end an average
balanced accuracy of 0.624 was achieved on detecting
landslides, by using also locations that the model has not
been trained on. As you can see in Figure 3, these accu-

Fig. 3. Training and Evaluation Accuracy
racies are quite volatile and significantly higher evalua-
tion accuracies were achieved at points during training.
This is most likely due to the small size of our training
and evaluation sets. It is important to note that our algo-
rithm regardless is able to pick up significant signal after
being trained on just a small sample of optical imagery.
This is remarkable considering that typical Deep Learn-
ing algorithms require at least a few hundred examples
from each class [14]. A more large scale approach is
likely to achieve good results. Since there are a lot of
differences between distinct locations and images, sig-
nificant generalization improvements could be achieved
using additional data.

5. FUTURE DEVELOPMENTS

The next step in the project development is to detect
even medium and small size events. More images will
be necessary. Another important parameter that must be
considered is the image resolution. The final Sentinel 2
images have a resolution of 10 × 10 m. A smaller res-
olution or further preprocessing may be necessary for
accurate landslide prediction.

While it is possible to detect landslides based on just



optical imagery, it is likely that other types of data such
as SAR from Sentinel-1 would be better suited for mon-
itoring land movements. Some considerations have been
already done in [20], where interferometry is used at this
aim, and coherence of the images is discussed, as criti-
cal issue. Sentinel-1 would allow also to overcome the
problem related to cloud coverage, proved to be a signif-
icant problem for Sentinel-2 data collection. Moreover,
a system similar to that proposed in this paper, trained
on SAR data or on a combination of SAR and optical
data, might produce highly accurate results. The prob-
lem is that Sentinel-1 data have resulted not available on
the period of interest, because of the USA shut down.
At this end, for future works Sentinel-1 data will be pro-
vided by the ESA centre for Earth observation (ESRIN)
in Frascati, south of Rome, Italy.

Another aspect to explore is the possibility to use the
software for the classification of different types of past
landslides. Landslide classification is primarily based on
type of movement (falls, topples, slides, spreads, flows)
and type of material (rock, soil, mud and debris) [21]. A
model similar to that proposed would likely succeed in
this task, given sufficient amount of examples for each
landslide type.
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