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ABSTRACT 

 

Land cover mapping is one of the classic applications of 

synthetic aperture radar remote sensing. However, despite of 

the algorithmic progress in classification techniques, the 

semantic content of available maps does remain unchanged, 

with only a few macro-classes (like water, forest, urban, and 

bare soil) being discriminated in the majority of the works 

from past years. In this paper, a methodology to extract a 

higher level semantics from synthetic aperture radar images 

is presented. It is based on coupling pixel-based clustering 

with object-based image analysis and contextual information. 

Preliminary results have been produced from multitemporal 

SAR datasets over a forest area in Colombia. They 

demonstrate that the synergic exploitation of pixel and object 

information can provide higher quality land cover results and 

more information to map users. 

 

Index Terms— synthetic aperture radar, land cover 

classification, high-level semantics, multitemporal, object-

based image analysis 

 

1. INTRODUCTION 

The open access data policy applied by the European Space 

Agency (ESA) to the Copernicus mission is rapidly 

revolutionizing the remote sensing downstream sector, both 

at industrial and academic level. Such an abundance of data 

is greatly boosting the downstream market [1] and is posing 

new challenges to the scientific community.   

Among them, the improvement of available land cover 

maps is probably one of the most urgent. In particular, when 

applied to synthetic aperture radar (SAR) datasets, 

classification is, for instance, hard to perform, as testified by 

the wide literature published on the topic in the last years. 

Indeed, most of the efforts concentrate on the development of 

new algorithms and techniques able to handle large bulks of 

data, eventually in cloud environment (like the Google Earth 

Engine [2]) and exploiting deep architectures [3]. However, 

a more critical analysis of the recent literature on the topic 

reveals that, despite of the algorithmic progress, the semantic 

level of the output maps has not really changed in the last 20 

years [4], [5]. This is due to the fact that, generally, the pixel 

level is the privileged source of information. Therefore, the 

challenge is the development of new algorithms able to enrich 

the semantic level of land cover maps. 

In this work, a new algorithm for multitemporal SAR 

land cover mapping is presented.  It exploits both pixel-based 

and object-based techniques to extract a high number of high-

level classes. Novelties are introduced both in the processing 

phase and in the output quality. A synergy between pixel-

based and object-based methods is exploited to improve the 

classification output through the enhancement of the 

semantic label attached to each class.  In other words, a more 

specific verbal attribute with respect to the classic “Water”, 

“Urban”, “Forest”, etc. is provided as output to better explain 

the meaning of some identified patterns and their 

interconnection with other scene features. 

The work is organized as follows. The general 

methodology is discussed in Section 2. Preliminary 

experimental results are presented in Section 3. Conclusions 

are drawn at the end of the work. 

 

2. METHODOLOGY 

The general workflow for high-level semantic land cover 

classification is depicted in Figure 1. A multitemporal stack 

of Sentinel-1 SAR ground range detected (GRD) images is 

used as input and processed for the generation of temporal 

change-detection color composites as described in [6]. 

Actually, the original chain was designed for ingesting 

complex products, since the interferometric coherence was 

used as one of the temporal channels. Therefore, the 

processing has been adapted here to fit with detected images. 

In particular, the coherence information, useful to enhance 

the presence of urban areas, is replaced by a texture measure, 

the data range, having a comparable information content. The 

data range is defined as follows 

 

                                 dr = max(W) – min(W),                      (1)  

 

where max(W) and  min(W) represent the maximum and the 

minimum backscattering value in a moving window, 

respectively. The data range is basically an edge detector. It 

is expected to be high in presence of high-texture areas (like 

urban areas) and low where the texture is typically negligible 

(water surfaces, forests, etc.). 

Following the workflow reported in Figure 1, the 

change-detection RGB composite is then processed for 

semantic clustering as discussed in [7]. This technique allows 



for automatically enriching the output cluster map with a 

basic semantics, i.e. each cluster is labelled with a verbal 

attribute related to its color. As explained in [7], this attribute 

can be exploited to pre-select an over-dimensioned group of 

clusters sharing the backscattering characteristics which are 

expected to originate from a certain scene pattern. This pre-

classification map is then refined through a feature-adaptive 

object-based reasoning aiming at selecting only the image 

segments having the geometric and/or contextual 

characteristics relevant to a specific class. This is useful to 

split macro-clusters, grouping more image features, into more 

specific classes. As an example, water surfaces are expected 

to have low backscattering values. However, the class 

“Water” is very generic since it includes at least three features 

like rivers, lakes, and sea surfaces. They can be identified if 

object information is considered. In [7], a complete 

discussion about the extraction of small reservoirs in semi-

arid environment has been provided. Here, that framework is 

generalized and specified for several classes and features, 

whose list is provided in Table 1.  

The main goal is to further decompose the macro-clusters 

identifiable by pixel-based clustering by using geometric and 

contextual information. This way, as an example, the “Water” 

class can be split in “River”, “River trunk”, and “Lake”. 

These features, indeed, share the same scattering attribute, 

being characterized by low reflectivity typical of water 

surfaces. However, they are clearly distinguishable if the 

geometry of the relevant image segments is analyzed. Rivers 

are elongated objects, while lakes are compact. In image 

processing, these concepts can be expressed as follows. The 

elongatedness is given by [8] 

 

                                               𝐹𝐸 =
𝐴

𝑊2
,                                      (2) 

 

where A is the object area and W the number of cycles needed 

to completely shrink the image segment.  

The compactness is defined as follows [9] 

 

                                              𝐹𝐶 =
4𝜋𝐴

𝑃2
,                                     (3) 

 

where P is the object’s perimeter. This measure expresses 

how much the object is shaped like a circle.  

The scattering and geometric properties of the objects are 

combined in a fuzzy classification system [10] able to 

automatically assign the output class based on the likelihood 

of each segment with low backscattering to belong to one of 

the two possible classes, i.e. “River” (high elongatedness) 

and “Lake” (high compactness). Objects identified as “River” 

but not fully satisfying the elongatedness criterion are 

downgraded to “River trunk”. These clusters are likely to 

represent small river portions disconnected from the principal 

cluster due to the presence of dominant dry soil and/or 

because of dimensions at the limit of the sensor resolution.   

Once the class “River” has been identified, it can be used 

to better specify the spatial arrangement of the macro-class 

“Bare soil” within the scene. Indeed, this is typically a not 

structured class, i.e. bare soils rarely have a well-defined 

shape and/or a precise collocation within the scene. However, 

when a bare soil cluster is adjacent to a river cluster, it can be 

labeled as “Sediment”. Moreover, small areas completely 

enclosed in a “Sediment” cluster and having a mixed 

backscattering (i.e. not clearly associable to one of the macro-

groups defined in Table 1) can be referred as “Mixed 

sediments.” 

Moving away from the river, bare soils can be classified 

as “Bare soil river proximity” and “Bare soil” depending on 

whether they fall or not within a properly defined buffer zone 

around the river itself. This allows the map user to understand 

a further spatial relation within the scene, since areas in 

proximity of rivers are subject to different problems and/or 

regulations. 

Following similar reasoning, it is possible to define the 

18 classes listed in Table 1 starting from the two other macro-

groups (vegetation and urban) typically retrievable using 

 

Fig. 1. Workflow for the generation of high-level semantic land cover maps.  

 



pixel-based processing. The implemented algorithm is not 

fully described for brevity. However, the details provided in 

the last column of Table 1 should help the reader in figuring 

out the information layers involved in the specification of 

each class. As for the classes previously described, they are 

combined in a fuzzy system for retrieving the high-level class 

best fitting with the geometric, scattering, and contextual 

properties of the selected pre-classification mask.  

  

3. PRELIMINARY EXPERIMENTAL RESULTS 

In Figure 2, the output of the proposed workflow for high-

level semantic land cover mapping is reported. In particular, 

in Figure 2a, the input RGB change detection product is 

shown. The correspondent low-level semantic clustering is 

depicted in Figure 2b. The reader should note that the 

appearance of the RGB product and of its clustered version is 

very similar, and this allows for an immediate semantic 

transferring between the two products, as discussed in [7]. In 

Figure 2c, the 18-classes classification map resulted from the 

proposed workflow is shown. In the following, this map will 

be referred to as HLS map. Finally, in Figure 2d, the output 

of a four-class (water, urban, forest, and soil) supervised 

support vector machine (SVM) is reported for comparison. 

To this end, the 18-classes of the HLS map have been 

grouped in the four macro-classes reported in Table 1. A 

ground truth of about 500 pixels for the “Water” class, 6000 

pixels for the “Soil” and the “Urban” classes, and 20000 

pixels for the “Forest” class has been manually retrieved via 

photo-interpretation of the patch shown in Figure 1. 

In Table 2, the confusion matrix for the SVM 

classification is reported. The overall accuracy with respect 

to the retrieved ground truth is 61.3%. The kappa coefficient 

is 0.41.  

In Table 3, the confusion matrix for the HSL 

classification is reported. The overall accuracy with respect 

Table 1. High-level semantic classes defined through the proposed workflow with their explanation. 

ID Class name Macro-group Explanation 

1 Shadow Low scatterers/Water Low reflectivity backslope surfaces, not structured 

2 Layover High scatterers/Urban High reflectivity foreslope surfaces, typically structured 

3  River Low scatterers/Water Highly elongated, low reflectivity 

4 River trunk Low scatterers/water Moderately elongated, low reflectivity, small area 

5 Lake Low scatterers/water Highly compact, low reflectivity 

6 Sediments Soil Low reflectivity, not structured, adjacent to rivers 

7 Mixed sediments Soil Mixed reflectivity, not structured, surrounded by sediments 

8 Soil, river proximity Soil Low reflectivity, not structured, close to rivers 

9 Forest Vegetation High texture, medium reflectivity 

10 Mixed forest Vegetation Mixed reflectivity, surrounded by forest, not structured 

11 Sloped forest High scatterers/Urban High reflectivity foreslope surfaces adjacent to dominant forest 

12 Bare soil Soil Low reflectivity, not structured 

13 Dense urban High scatterers/Urban High reflectivity big structured clusters 

14 Village High scatterers/Urban High reflectivity small clusters, not structured 

15 Peri-urban High scatterers/Urban High reflectivity small clusters close to structured urban areas 

16 Green urban Vegetation Vegetation clusters totally surrounded by urban areas 

17 Mixed urban High scatterers/Urban Unidentified clusters surrounded by dense urban areas 

18 Isolated built-up High scatterers/Urban Isolated, structured high reflectivity clusters 

 

    
(a)                                          (b)                                             (c)                                           (d) 

Fig. 2. High-level semantic land cover mapping results. (a) Input RGB change-detection product. (b) Semantic clustering: 

each cluster is associated to a low-level semantic color label. (c) Output of the proposed workflow, 18 classes as reported 

in Table 1. (d) Support vector machine output, 4 macro-classes (water, forest, soil, urban). 

 



to the retrieved ground truth is 88.2%. The kappa coefficient 

is 0.79. 

Table 2. Confusion matrix for the SVM classification. 

 Water Soil Urban Forest 

Unclass. 0.00 0.00 0.00 0.00 

Water 72.9 0.20 0.24 1.30 

Soil 25.1 77.2 20.7 28.3 

Urban 0.00 0.00 30.4 34.1 

Forest 2.00 22.6 48.6 36.2 

 

Table 3. Confusion matrix for the HLS classification. 

 Water Soil Urban Forest 

Unclass. 0.00 0.18 0.00 3.13 

Water 96.0 0.24 0.00 0.00 

Soil 3.41 86.9 1.06 9.02 

Urban 0.00 0.00 97.7 1.88 

Forest 0.60 12.7 1.27 86.0 

 

The HLS classification exhibits much higher values for 

all the considered quality indicators if compared with SVM 

classification. In particular, the latter is penalized by huge 

interclass confusion for the classes “Forest” and “Urban” 

which are highly affected by layover phenomena in the 

original SAR image. Working with objects and contextual 

information in HLS classification allows for the mitigation of 

this problem. Layover can be effectively eroded by 

considering the spatial arrangements of the clusters, since 

layover areas actually covered by forest are usually enclosed 

by or adjacent to dominant “Forest” clusters. 

The same applies for the “Urban” class. This is typically 

very heterogeneous, with several different land covers falling 

in it. Using pixel-based approaches, the built-up is mostly 

identified. However, this is only one of the features 

constituting an urban agglomerate. In classic approaches, it is 

usual to find some “Forest” spots within the cities, which is a 

nonsense. Using objects, it is possible to include green areas 

within the “Urban” class which, in the HLS classification, 

shows a lower interclass confusion, as reported in Table 3.  

 

4. CONCLUSIONS 

A new framework for high-level semantic land cover 

mapping has been proposed to improve the quality of the 

output of SAR images classification. The framework exploits 

the synergy of pixel-based and object-based methods to 

specify the macro-clusters usually defined in the established 

SAR literature in more detailed classes better defining the 

spatial arrangement and the context of the scene features. 

The proposed workflow has been applied to a dataset 

concerning a forest area in Colombia. The obtained 

preliminary results, when compared with literature 

classification procedures, show the superiority of the joint 

exploitation of pixel-based and object-based image analysis. 

The proposed methodology is fully unsupervised and is 

expected to be a promising solution for the generation of 

high-quality land cover maps 
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