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ABSTRACT

Land surface emissivity is required for deriving surface
temperature from thermal infrared radiances. When using 
single-channel or two-channel thermal infrared sensors,
information on emissivity may be derived from spectral 
reflectance measurements through regression models. In this 
study, we present relationships derived over bare soils for 
Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels
were obtained from soil spectra (between 0.4 and 13 µm) 
extracted from the ASTER spectral library and the dataset
acquired by Lesaignoux et al. (2013). The best relations 
were obtained between reflectances in the mid-infrared 
channels (ETM5 and ETM7) and the thermal infrared 
channel (ETM6) with correlation coefficients of 0.63 and 
0.72 respectively. The relations were mostly generated by 
the variations of soil reflectances due to changes in soil 
moisture. Correlations were lower when considering the
variations due to soil type.  

Index Terms— Emissivity, Thermal Infrared, Landsat, Soil

1. INTRODUCTION

Land Surface Emissivity (LSE) is required for deriving 
surface temperature from thermal infrared (TIR) radiances 
[1][2]. Surface temperature is a very important land surface
variable for monitoring energy and water exchanges over 
land surfaces [3][4][5]. Thermal sensors with at least 3 
thermal channels (MODIS, VIIRS, ASTER…) can provide 
spectral emissivity and surface temperature thanks to 
methods such as the TES algorithm (Temperature 
Emissivity Separation [6][7]). When considering sensors
with one or two spectral bands, emissivity has to be set from 
independent information. This is the case for sensors on 
board of LANDSAT platforms. [8] and [9] showed that LSE 
was usually increasing with vegetation amount and that a 
vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) can be used to estimate

emissivity. This was confirmed later by [10][11] for 
example. In some situations, when soil has a very high 
emissivity or when plants are dry, emissivity can be
decreasing while NDVI increases [12]. Mira et al. [11] used
a simple exponential model to relate emissivity   to NDVI:  

(1)

where subscript s stands for bare soil conditions and 
subscript  for full vegetation canopy cover. k is a 
parameter mainly related to canopy architecture and
geometry of remote sensing data acquisition. This model 
was built using the same method as models relating the 
fraction of absorbed photosynthetically active radiation 
(fAPAR) to vegetation indices [13]. Other model forms
were proposed by [8] [10][14][15].

One of the main issues related to the potential use of
such model is related to the soil value, represented by 
parameter s, which may be the main factor of variation of 
emissivity over land surface. Bare soil emissivity varies as a 
function of many factors including soil types, mineral 
composition, surface soil moisture and roughness ([16][17] 
[18]). Sobrino et al. [14] related soil surface emissivity to
reflectances in the solar domain and in particular to
reflectances in red bands that are available for most of the
Earth observation sensors. For TM they proposed the 
following expression: 

(2)

where TM6 was the emissivity in band 6 and TM3 the 
reflectance in channel 3. This equation was trained over 49 
soil spectra acquired in laboratory conditions.  

Relating emissivity to red reflectance was first proposed 
by [15] for estimating soil emissivity from AVHRR sensors 
that included only two bands in the reflective domain. Other
sensors, such as MODIS or TM, ETM+ and OLI on board 
of the successive Landsat 5, 7 and 8 platforms have more



bands in this spectral domain. A new analysis is required for
evaluating if the red band is the most suitable band for 
estimating soil emissivity or if other bands should be used 
instead.

New soil data, combining VISIR and TIR spectra were 
acquired by Lesaignoux et al. [18] including 32 types of soil 
with around 6 levels of moisture content. The analysis of 
this dataset provides new opportunities for investigating the 
relationship between spectral reflectances in the solar 
domain and thermal emissivities. In this paper, we present a 
preliminary analysis of these data in combination to the 
ASTER spectral library with the objective to establish new
relationships that can be used to estimate bare soil 
emissivity from Landsat reflective bands.  

2. MATERIAL AND METHODS

Soil reflectance spectra between 0.4 and 13 µm were
obtained from the ASTER spectral library V2 [19] and the 
Lesaignoux spectral library (noted LSL here) [18]. The 
ASTER spectral library included 41 reflectance spectra, all 
of them acquired in dry conditions, covering the whole 
spectral range required in this study (Figure 1). Nowadays, 
the ASTER library is not anymore available. It has been 
replaced by the ECOSTRESS spectral library which 
contains the same soil spectra. The LSL database included
190 reflectance spectra measured over 32 soil samples with 
five to seven soil moisture levels (Figure 1). Samples were 
obtained from various agricultural soils in South of France. 

Soil reflectance values in the channels of the Landsat 7-
ETM+ sensor (Table 1) were computed by convoluting soil 
spectra with channels spectral response. Correlation 
coefficients were calculated between the reflective bands 
and the thermal band for each database and for the whole set
of data. As the ASTER library contained only spectra for 
dry soils, we also considered merging the ASTER library
with the data acquired over dry soils in LSL. Eventually,
linear regressions were computed for the spectral bands 
with the best correlation coefficients. The analysis was
performed over spectral reflectance spectra () in the whole 
domain. Emissivity () in the thermal domain would be 
retrieved as:

(3)

Table 1: ETM+ spectral ranges
Band number Spectral range (µm) Spectral domain 

1 0.441 – 0.514 
Visible 2 0.519 – 0.601 

3 0.631 – 0.692 
4 0.772 – 0.898 near-infrared 
5 1.547 – 1.749 mid-infrared 
6 10.31 – 12.36 thermal-infrared 
7 2.064 – 2.345 mid-infrared 
8 0.515 – 0.896 panchromatic 

Figure 1: soil spectra in the ASTER database (top)
and the LSL library (bottom) 

3. RESULTS 

Table 2 presents the correlation coefficients that were
obtained over the two databases and the merged database
between the thermal band (ETM6) and the reflective bands.
Correlation coefficients were higher than 0.5 for almost all 
bands in LSL, while no correlation were obtained for most 
of the bands in the ASTER database. For both databases, the 
best correlations where obtained for the bands in the mid 
infrared and in particular for ETM7. When combining the
two databases, the correlation coefficient was 0.72 for
ETM7 and 0.63 for ETM5. Correlation coefficients obtained
over dry spectra were very low. Figure 2 presents the
relations between ETM6 and the 2 most correlated bands 
(ETM5 and ETM7) as well as with the red band (ETM3) 
that was previously used by [14][15] (in red ASTER 
database, in blue LSL database). Linear regressions between
ETM6 and ETM3, ETM5 and ETM7 are also shown for the 
various datasets (global, LSL, dry soil). Linear regressions
coefficients and evaluations are given in Table 3 according
to the following notation (i being 3, 5 or 7): 

(4)



Figure 2: relations between reflectances in ETM6 and ETM3 
(left), ETM5 (centre) and ETM7 (right). : LSL data, : LSL dry 

data, o: ASTER data; Black line; regression over the whole dataset; 
dashed line: regression over LSL; dotted line: regression over the

dry soils data. 

The Root Mean Square Errors when fitting the linear 
regressions ranged between 0.003 and 0.005. They were 
larger (0.005 to 0.007) when the linear equations were 
applied to the remaining part of the dataset (regressions 
trained over LSL and evaluated on ASTER dataset and 
regression trained over dry soils data and evaluated on wet 
soils). The RMSE obtained when applying Eq. 2 from [14] 
was 0.007. 

Table 2: correlation coefficients of reflective bands with the 
thermal band

Band ASTER library LSL library Global Dry 
1 -0.13 0.48 0.37 0.15 
2 -0.10 0.51 0.42 0.08 
3 -0.06 0.52 0.44 0.03 
4 -0.02 0.52 0.47 0.03 
5 0.15 0.70 0.63 0.01 
7 0.34 0.81 0.72 0.15 
8 -0.05 0.52 0.45 0.07 

Table 3: coefficients and evaluations of linear regressions between
mid-infrared and thermal bands

a b RMSE 
RMSE on 
remaining

data 
ETM5, global 0.026 0.017 0.0043 - 
ETM5, LSL 0.035 0.015 0.0040 0.0061 
ETM5, dry 0.000 0.029 0.0045 0.0082 
ETM7, global 0.030 0.017 0.0038 - 
ETM7, LSL 0.042 0.016 0.0033 0.0070 
ETM7, dry 0.008 0.026 0.0044 0.0066 

The relation between ETM7 and ETM6 over the LSL 
database presented a possible non-linear behavior that was
represented by the following hand-fitted equation (Figure 
3): 

(5)

with fitting performances similar to the best linear fit 
(RMSE = 0.0033). Application to ASTER data gave slightly 
better performances (RMSE = 0.0065 vs. 0.0070).  
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Figure 3: non-linear fit for ETM6 vs. ETM7 on LSL data.

3. DISCUSSION AND CONCLUSION

The results obtained on our dataset (LSL + ASTER) showed
that the variability of the relation between the reflective
domain and the thermal domain (in ETM+ bands) was lower 
in the mid-infrared domain. In the visible and the near-
infrared, variations in reflectances between the different 
soils were large while reflectances in ETM6 were in a very 
limited range whatever the soil type. For example, one soil 
in LSL is very bright even in wet situations.

The ASTER library contains a large variability of soil 
types, all of them in dry conditions. One of the soils,
corresponding to almost pure gypsum sand, has a very 
peculiar spectrum. The LSL library has a more limited range
of soil types (for example it does not include sandy soils),
but each soil sample was measured at several levels of soil 
moisture which generated variations in soil brightness both
in the reflective and the thermal domains. These variations 
were well correlated and a possible non-linear relation was
identified between ETM6 and ETM7 providing slightly 
better results than a linear relation over the LSL. 

When only considering dry soils (ASTER or 
ASTER+LSL), correlations between reflective bands and
the thermal band reflectance were close to zero, showing
that the variability in soil types is not reflected in relations
between bands. In that case, the best estimator of soil 
emissivity s was the average value 0.971 (=1-0.029). This 
generated an error larger than 0.004. 



When considering all type of soils together, significative
correlation between the thermal band and the bands in the 
mid-infrared domain existed. A linear relation between 
ETM7 and ETM6 was found that can be used for estimating
soil surface emissivity with a fitting RMSE also around 
0.004. At the moment, this relation has not been evaluated 
over independent dataset. 

The dataset used in this study was obtained by 
combining two sources of data which were acquired with 
different sampling protocols and measurement devices. The
representativeness of the global dataset is not established, as 
it is shown when comparing the composition of the ASTER 
library (large diversity of soil, but all in dry conditions) and 
the LSL library (lower diversity of soil, but with changing 
moisture). The acquisition of new spectra spanning from 
visible to thermal infrared at different soil moisture level
would be very valuable, both for increasing the database
representativeness and to provide data for better evaluating 
the quality of soil emissivity estimation. 

ACKNOWLEDGEMENT

This work was made possible thanks to the financial support of 
CNES (Centre National d’Etudes Spatiales) through the evaluation 
of TOSCA committee (E2IRT project). LSL data were acquired at 
ONERA in the frame of projects funded by the PRF ENVIRO 
program (internal federative project lead at ONERA) and the 
PNTS (French National Program for Remote Sensing from Space). 

6. REFERENCES

[1] T.N. Carlson, O. Taconet, A. Vidal, R.R. Gillies, A. Olioso,
and K. Humes, “An overview of the workshop on thermal remote 
sensing held at La Londe les Maures, France, September 20–24,”  
Agric. For. Meteor., 77, pp. 141–151, 1993. 
[2] B. Tardy, V. Rivalland, M. Huc, O. Hagolle, S. Marcq, and G.
Boulet, “A Software Tool for Atmospheric Correction and Surface 
Temperature Estimation of Landsat Infrared Thermal 
Data,” Remote Sensing, 8, p. 696, 2016.
[3] A. Olioso, H. Chauki, D. Courault, and J.-P. Wigneron, 
“Estimation of evapotranspiration and photosynthesis by 
assimilation of remote sensing data into SVAT models”, Remote

Sens. Environ., 68, pp. 341-356, 1999. 
[4] M.C. Anderson, R.G. Allen, A. Morse, and W.P. Kustas, “Use 
of Landsat thermal imagery in monitoring evapotranspiration and 
managing water resources”, Remote Sens. Environ., 122, pp. 50-
65, 2012. 
[5] B. Gallego-Elvira, A. Olioso, M. Mira, S. Reyes-Castillo, G.
Boulet, O. Marloie, S. Garrigues, D. Courault, M. Weiss, P. 
Chauvelon, and O. Boutron, “EVASPA (EVapotranspiration 
Assessment from SPAce) tool: An overview”, Proc. Environ. Sci., 
19, pp. 303–310, 2013.  

[6] T. J. Schmugge, S. J. Hook, and C. Coll, “Recovering surface
temperature and emissivity from thermal infrared multispectral
data,” Remote Sens. Environ., 65, pp. 121–131, 1998. 
[7] F. Jacob, A. Lesaignoux, A. Olioso, M. Weiss, K. Caillault, S. 
Jacquemoud, F. Nerry, A. French, T. Schmugge, X. Briottet, and 
J.-P. Lagouarde, “Reassessment of the temperature - emissivity 
separation from multispectral thermal infrared data: Introducing 
the impact of vegetation canopy by simulating the cavity effect 
with the SAIL-Thermique model,” Remote Sens. Environ., 198, pp. 
160-172, 2017. 
[8] A.A. van de Griend, and M. Owe, “On the relationship between 
thermal emissivity and the normalized difference vegetation index 
for natural surfaces,” Int. J. Remote Sens., 14, pp. 1119–1131, 
1993. 
[9] A. Olioso, “Simulating the relationship between thermal 
emissivity and the normalized difference vegetation index,” Int. J.

Remote Sens., 16, pp. 3211–3216, 1995. 
[10] E. Valor, and V. Caselles, “Mapping land surface emissivity 
from NDVI: Application to European, African, and South 
American areas,” Remote Sens. Environ., 57, pp. 167-184, 1996. 
[11] M. Mira, A. Olioso, B. Gallego-Elvira, D. Courault, S.
Garrigues, O. Marloie, O. Hagolle, P. Guillevic, G. Boulet,
“Uncertainty assessment of surface net radiation derived from 
Landsat images,” Remote Sens. Environ., 175, pp. 251–270, 2016. 
[12] A. Olioso, G. Soria, J.A. Sobrino, and B. Duchemin, 
“Evidence of low land surface thermal infrared emissivity in the
presence of dry vegetation,” IEEE Geosc. Rem. Sens. Let., 4, pp.
112-116, 2007. 
[13] F. Baret, and A. Olioso, "Estimation à partir de mesures de
réflectance spectrale du rayonnement photosynthétiquement actif 
absorbé par une culture de blé," Agronomie, 9, pp. 885-895, 1989.
[14] J.A. Sobrino, J.C. Jiménez-Muñoz, G. Sòria, M. Romaguera,
L. Guanter, J. Moreno, A. Plaza, and P. Martínez, “Land Surface 
Emissivity Retrieval From Different VNIR and TIR Sensors,” 
IEEE Trans. Geosc. Rem. Sens., 46, pp. 316-327, 2008. 
[15] J.A. Sobrino, and N. Raissouni, “Toward remote sensing
methods for land cover dynamic monitoring: Application to 
Morocco.” Int. J. Remote Sens., 21, pp. 353-366, 2000. 
[16] J. W. Salisbury, and D. M. D’Aria, “ Emissivity of Terrestial
Materials in the 8-14um Atmospheric Window,” Remote Sens.

Environ. 42, pp. 83–106, 1992.
[17] M. Mira, E. Valor, V. Caselles, E. Rubio, C. Coll, J.M. Galve,
R. Niclos, J.M. Sanchez, R. Boluda, “Soil Moisture Effect on
Thermal Infrared (8–13-μm) Emissivity,” IEEE Trans. Geosc.

Rem. Sens., 48, pp. 2251–2260, 2010. 
[18] A. Lesaignoux, S. Fabre, and X. Briottet, “Influence of soil 
moisture content on spectral reflectance of bare soils in the 0.4–14
μm domain,” Int. J. Remote Sens., 34, pp. 2268–2285, 2013. 
[19] A. M. Baldridge, S. Hook, C.I. Grove, and G. Rivera, “The 
ASTER spectral library version 2.0,” Remote Sens. Environ., 113,
pp. 711–715, 2009. 


