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ABSTRACT
Recently, enormous efforts have been made to improve the
performance of the linear or nonlinear mixing model for
hyperspectral unmixing, yet their ability to handle spectral
variability and extract physically meaningful endmembers
remains limited. Based on the powerful learning ability of
deep learning, we propose a weakly-supervised unmixing
network, called WU-Net, to break the bottleneck. Beyond the
autoencoder-like architecture, WU-Net learns an additional
network from the pure or nearly-pure endmembers to correct
the weights of another unmixing network towards a more
accurate and interpretable unmixing solution, thus yielding a
two-stream deep network. Experimental results conducted on
two different datasets, one fully artificial simulation dataset
and one simulated EnMap dataset generated from a real
HyMap dataset, demonstrate the effectiveness and superiority
of WU-Net over several state-of-the-art algorithms.

Index Terms— Deep learning, hyperspectral imagery,
remote sensing, spectral unmixing, two-stream network,
weakly-supervised.

1. INTRODUCTION

Spaceborne or aerial spectroscopy (or hyperspectral) imagery
is characterized by rich spectral information, which enables
the identification and detection of materials at a more accu-
rate level. This has led to a growing interest in hyperspec-
tral data processing and analysis, such as dimensionality re-
duction [1, 2], image fusion [3, 4], land-cover and land-use
classification [5, 6], pansharpening [7, 8], spectral unmix-
ing [9, 10], and target detection [11, 12, 13]. Due to the
low spatial resolution in reality, there are a large number of
mixed pixels in hyperspectral imagery (HSI), inevitably de-
grading spectral discrimination. Spectral unmixing is usu-
ally defined as an important pre-processing procedure that
simultaneously estimates a collection of individual compo-
nents (endmembers) and a series of corresponding fractional
percentages (abundances).

A common but effective model, the linear mixing model
(LMM), has been widely applied for hyperspectral unmix-
ing (HU). Nevertheless, spectral variability (SV) is ubiqui-
tous in HSI. In general, SV refers to the various deforma-
tions of a spectral signature in a certain material, due to the
effects of illumination and topography, atmospheric condi-
tions, and the intrinsic variability of the materials. SV in-
evitably transfers the unpredicted errors into LMM, yield-
ing relatively poor unmixing performance. Despite numerous
LMM-based methods proposed to address various spectral
variabilities (e.g., ELMM [14], SULoRA [9], ALMM [10]),
the modeling ability in complex conditions does not gener-
alize well. Consequently, the linearized strategy still hinders
the unmixing performance from further improving. Very re-
cently, some nonlinear models based on deep learning (DL)
techniques [15, 16] have been proposed to enhance the ability
of data representation and fitting, further improving HU’s per-
formance. In practice, these methods tend to generate physi-
cally meaningless endmembers, since there is a lack of effec-
tive guidance for real endmembers in the blind HU.

To address the aforementioned limitations, we propose
a weakly-supervised unmixing network, called WU-Net.
WU-Net starts with a two-stream network architecture. One
learns a mapping between the relatively pure endmembers ex-
tracted from the image and their corresponding abundances.
The other is an autoencoder-like network similar to those
previously-proposed DL-based unmixing methods. Signifi-
cantly, we force the two networks in the unmixing module
to share the same weights in order to transfer the potentially
intrinsic properties of the endmembers into our network sys-
tem, thus yielding a more physically meaningful unmixing
process. In addition, the abundance non-negative constraint
(ANC) and the abundance sum-to-one constraint (ASC) are
also embedded into the network with the additional layers.

The paper is organized as follows. The methodology is
detailed in Section 2. Section 3 presents the experimental
results on two datasets. Section 4 draws a conclusion after
presenting a brief summary.
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Fig. 1. An overview of the proposed network architecture (WU-Net).

2. METHODOLOGY

2.1. Network Architecture

In this section, we detail the proposed WU-Net for HU; Fig. 1
illustrates the corresponding architecture overview. WU-Net
is based on a two-stream deep network, which consists of an
Endmember Network and an Unmixing Network.

2.1.1. Endmember Network

We propose an Endmemeber Network (EN) for hierarchical
endmember representation that maps the endmembers to their
abundances, as illustrated at the top of Fig. 1. These endmem-
bers can be extracted from the original HSI with endmember
extraction algorithms (e.g., VCA [17]), while the correspond-
ing abundances can be regressed by LMM-related methods.

2.1.2. Unmixing Network

Following the previous autoencoder-based unmixing frame-
work, we design a similar Unmixing Network (see the bottom
of Fig. 1) with two modules of unmixing and reconstruction.
The main differences lie in two aspects. In one, a dropout
layer is added in the beginning to remove the SV effectively,
and then a ReLU activation function is specified for an ANC
demand in the penultimate layer of the unmixing process; the
softmax layer is finally used to meet the ASC with respect to
the abundances. In the other, the parameters in our Unmixing
Network (UN) are shared with those of the Endmember Net-
work, making it possible to take the endmember properties
fully into consideration during the process of unmixing.

2.2. Problem Formulation

Given the input xi ∈ RL, which denotes the spectral signature
with L bands at i-th pixel, the l-th hidden layer (zli) in the

network can be formulated by

z
(l)
i =

{
f(W(l) Txi + b(l)), l = 1,

f(W(l) Tz
(l−1)
i + b(l)), l = 2, ...,m,

(1)

where f represents the activation function, and m is the num-
ber of layers. W(l) and b(l) stand for the weight and bias
in the l-th layer, respectively. Accordingly, the overall loss
function of WU-Net can be written as

L = LEN + LUN + βLreg, (2)

where LEN is the cross-entropy loss for Endmember Net-
work, while LUN is the mean square loss between the in-
put HSI and the reconstructed one for Unmixing Network.
To avoid the overfitting of the network, a regularization term
(Lreg) parameterized by β, is also considered in the weights.

3. EXPERIMENTS

3.1. Dataset Description

We quantatively evaluate the unmixing performances of sev-
eral state-of-the-art algorithms on two datasets: a synthetic
dataset widely used in [18, 9, 10, 14] and a simulated En-
MAP dataset. The first data was generated by five endmem-
bers with 224 bands selected from the USGS spectral library.
It consists of 200 × 200 pixels. For the second dataset, the
EnMAP imagery is simulated from the HyMap data over Mu-
nich, Germany, using the EeteS – an EnMAP end-to-end sim-
ulation tool [19], with abundance maps that are computed by
a high-quality ground truth [20]. We selected a region of in-
terest (ROI) of 171 × 93 pixels with 221 spectral bands after
noisy bands removal. In the studied scene, seven main cate-
gories are investigated, including #Roof, #Asphalt, #Polyvinyl
Chloride (PVC), #Metal, #Soil, #Water, and #Vegetation. Fig.
2 shows the false color images of the two data.



Table 1. Network configuration in each layer of WU-Net.
Dataset Pathway Encoder Decoder

Synthetic
EN 224-160-80-20-5 /
UN 224-160-80-20-5 5-20-80-160-224

EnMAP
EN 221-160-80-20-7 /
UN 221-160-80-20-7 7-20-80-160-221

Table 2. Quantitative performance comparisons of different al-
gorithms in terms of ARMSE values.

Methods Synthetic Data EnMAP Data
FCLSU [10] 0.0630 0.2057
ELMM [14] 0.0323 0.1956
SULoRA [9] 0.0220 0.1881
ALMM [10] 0.0215 0.1804

Autoencoder [16] 0.0331 0.2040
WU-Net 0.0190 0.1653

(a) Synthetic data (b) EnMAP data

Fig. 2. False color images of the two HSI used.

3.2. Implementation Details

Our network is implemented on the Tensorflow framework.
Specifically, the Adam optimizer with the “poly” learning rate
is adopted to update the network parameters, and the initial
learning rate is 0.1 with a power of 0.99. The momentum in
batch normalization is set to 0.9. The dropout technique (0.9
keeping probability) and L2-norm regularization parameter-
ized by 0.01 are used to improve the network’s generalization
ability. There is a need for around 200 epochs for model con-
vergence. Table 1 details the network architecture in each
layer of WU-Net. In our case, we used around 500 endmem-
bers extracted by VCA for training the Endmember Network.

3.3. Comparison with State-of-the-art Approaches

Table 2 lists the quantitative unmixing results of different
methods with respect to abundance overall root mean square
error (ARMSE). Fig. 3 visualizes the abundance maps of
four main components (Asphalt, Soil, Water, and Vegeta-
tion) and the reconstruction error maps between real HSI and
reconstructed HSI using FCLSU, ALMM and WU-Net.

Overall, FCLSU yields poor unmixing performances, as
it neglects to model the SV, leading to an inaccurate abun-
dance map estimation while strictly following the strong con-
straints of ANC and ASC. By considering the main SV (scal-
ing factor), ELMM performs better than FCLSU. There is,
however, a deficiency for ELMM in modeling other spectral
variabilities. For that, SULoRA achieves a competitive result
from the perspective of low-rank subspace unmixing, while
ALMM finely models the scaling factors and other spectral
variabilities by learning an SV-orientated dictionary, thereby
further improving the unmixing performance. Despite this,
these LMM-based approaches still fail to represent SV well in

the complex scene, due to their limited representation ability.
According to the powerful learning ability of deep networks,
autoencoder-like models provide new insight into the research
of nonlinear unmixing. We have to admit, however, that the
lack of necessary prior knowledge could generate massive bad
solutions, in spite of the strong data fitting ability in autoen-
coder. This might explain why the autoencoder fails to effec-
tively unmix the HSI. The proposed WU-Net outperforms the
other algorithms, which indicates that the two-stream network
architecture is capable of effectively addressing the SV and
yields effective unmixing owing to the additional Endmem-
ber Network that fully embeds the semantically meaningful
properties of the endmembers into the Unmixing Network.

4. CONCLUSION

In this paper, we propose a weakly-supervised unmixing net-
work called WU-Net, which is a well-designed two-stream
deep network for hyperspectral unmixing. Unlike the previ-
ously proposed autoencoder-like models, WU-Net addition-
ally learns an Endmember Network from pure or nearly-pure
endmembers and transfer its parameters into the autoencoder-
based Unmixing Network, yielding more reasonable and su-
perior unmixing. Notably, WU-Net is limited by endmember
extraction to some extent. In our future work, we would like
to develop a more general network-based framework with the
aid of the multi-modal data (e.g., multispectral data [21, 22])
to address this issue more effectively.
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Fig. 3. Abundance maps of four main components and reconstruction error map between real HSI and reconstructed HSI.

metric sar image fusion,” Remote Sens., vol. 11, no. 6, pp. 681,
2019.

[5] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded re-
current neural networks for hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., 2019.

[6] D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. Zhu, “Learn-
able manifold alignment (LeMA): A semi-supervised cross-
modality learning framework for land cover and land use clas-
sification,” ISPRS J. Photogramm. Remote Sens., vol. 147, pp.
193–205, 2019.

[7] L. Deng, G. Vivone, W. Guo, M. Dalla Mura, and J. Chanussot,
“A variational pansharpening approach based on reproducible
kernel hilbert space and heaviside function,” IEEE Trans. on
Image Process., vol. 27, no. 9, pp. 4330–4344, 2018.

[8] G. Vivone, R. Restaino, and J. Chanussot, “Full scale
regression-based injection coefficients for panchromatic sharp-
ening,” IEEE Trans. on Image Process., vol. 27, no. 7, pp.
3418–3431, 2018.

[9] D. Hong and X. Zhu, “SULoRA: Subspace unmixing with
low-rank attribute embedding for hyperspectral data analysis,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 6, pp. 1351–
1363, 2018.

[10] D. Hong, N. Yokoya, J. Chanussot, and X. Zhu, “An aug-
mented linear mixing model to address spectral variability for
hyperspectral unmixing,” IEEE Trans. on Image Process., vol.
28, no. 4, pp. 1923–1938, 2019.

[11] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Joint reconstruction
and anomaly detection from compressive hyperspectral images
using mahalanobis distance-regularized tensor RPCA,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 5, pp. 2919–2930,
2018.

[12] X. Wu, D. Hong, P. Ghamisi, W. Li, and R. Tao, “MsRi-CCF:
Multi-scale and rotation-insensitive convolutional channel fea-
tures for geospatial object detection,” Remote Sens., vol. 10,
no. 12, pp. 1990, 2018.

[13] X. Wu, D. Hong, J. Tian, J. Chanussot, W. Li, and R. Tao,

“ORSIm Detector: A novel object detection framework in op-
tical remote sensing imagery using spatial-frequency channel
features,” IEEE Trans. Geosci. Remote Sens., 2019.

[14] L. Drumetz, M. Veganzones, S. Henrot, R. Phlypo, J. Chanus-
sot, and C. Jutten, “Blind hyperspectral unmixing using an
extended linear mixing model to address spectral variability,”
IEEE Trans. on Image Process., vol. 25, no. 8, pp. 3890–3905,
2016.

[15] A. Marinoni, J. Plaza, A. Plaza, and P. Gamba, “Integrating
multiple nonlinear estimators into hyperspectral unmixing,” in
Proc. WHISPERS, 2014, pp. 1–4.

[16] F. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfars-
son, “Neural network hyperspectral unmixing with spectral
information divergence objective,” in Proc. IGARSS, 2017, pp.
755–758.

[17] J. MP Nascimento and J. MB Dias, “Vertex component analy-
sis: A fast algorithm to unmix hyperspectral data,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, 2005.

[18] D. Hong, N. Yokoya, J. Chanussot, and X. Zhu, “Learning
a low-coherence dictionary to address spectral variability for
hyperspectral unmixing,” in Proc. ICIP, 2017, pp. 235–239.

[19] K. Segl, L. Guanter, C. Rogass, T. Kuester, S. Roessner,
H. Kaufmann, B. Sang, V. Mogulsky, and S. Hofer, “EeteS-
the EnMAP end-to-end simulation tool,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 522–530,
2012.

[20] U. Heiden, W. Heldens, S. Roessner, K. Segl, T. Esch, and
A. Mueller, “Urban structure type characterization using hy-
perspectral remote sensing and height information,” Landsc.
Urban Plan., vol. 105, no. 4, pp. 361–375, 2012.

[21] D. Hong, W. Liu, J. Su, Z. Pan, and G. Wang, “A novel hi-
erarchical approach for multispectral palmprint recognition,”
Neurocomputing, vol. 151, pp. 511–521, 2015.

[22] D. Hong, N. Yokoya, J. Chanussot, and X. Zhu, “Cospace:
Common subspace learning from hyperspectral-multispectral
correspondences,” IEEE Trans. Geosci. Remote Sens., 2019.


