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ABSTRACT

Training a deep neural network for classification constitutes a
major problem in remote sensing due to the lack of adequate
field data. Acquiring high-resolution ground truth (GT) by
human interpretation is both cost-ineffective and inconsistent.
We propose, instead, to utilize high-resolution, hyperspectral
images for solving this problem, by unmixing these images to
obtain reliable GT for training a deep network. Specifically,
we simulate GT from high-resolution, hyperspectral FENIX
images, and use it for training a convolutional neural network
(CNN) for pixel-based classification. We show how the model
can be transferred successfully to classify new mid-resolution
VENµS imagery.

Index Terms— VENµS satellite, hyperspectral image
classification, unmixing, deep learning, convolutional neural
network.

1 Introduction
Pixel-based classification of hyperspectral images is a major
task in remote sensing, which involves assigning a class la-
bel to every pixel of an input image. This task, also known
as pixel-wise classification or semantic segmentation, has at-
tracted many studies over the years. Various methods have
been proposed for this task. The traditional approach classi-
fies hand-crafted features, using support vector machines [1],
morphological profiles [2], sparse representation [3], etc.

However, these methods rely typically on human exper-
tise for tuning them on a specific dataset and they can extract
only “shallow” features of the original data [4]. An alternative
approach is to extract useful features directly from the image
pixels.

Deep learning (DL) models have proven to be suitable for
this kind of problem [5]. Such models are trained on image
data sets, and are capable of learning both low-level and high-
level feature representations directly from an input image, due
to their deep hierarchical architectures. In addition, some DL
models can exploit both spectral and spatial features of hyper-

spectral images, leading to improved classification results.
DL models can be categorized to supervised and unsu-

pervised models. Unsupervised models (e.g., auto-encoders),
are trained to extract features from large unlabeled data sets.
By restricting the encoder-decoder structure, one can adjust
the model to achieve the results of the required task [6] [7]
[8]. Supervised models (e.g., convolutional neural networks
(CNNs) and deep belief networks) are trained using ground
truth (GT) information as expected output of the network. In
principle, supervised networks can learn more precise fea-
tures by exploiting the label-specific information from the
training data [9] [10] [11].

Although most supervised models achieve superior classi-
fication, they rely on a considerable amount of GT for training
the model. Additionally, there is a limited amount of labeled
datasets in the remote sensing community [5], especially for
a new source of information such as a new satellite.

The Vegetation and Environment monitoring New Micro-
Satellite (VENµS) is a new satellite that was launched in Au-
gust 2017. It acquires frequent, high-resolution multispectral
images of over 100 sites of interest around the world. This
enables monitoring of plant growth and their health status,
as well as the impact of environmental factors, such as hu-
man activities and climate change, on land surfaces of the
Earth [12].

Up to this day, there is a relatively small number of images
acquired by VENµS and virtually no GT for training a model
on this data. Thus, in an attempt to overcome the lack of
labeled VENµS data, and in order to start using these images
in supervised models, we need to generate GT correlated with
the satellite data acquired.

To avoid the expensive task of obtaining a large number
of labeled samples, we propose a novel method for simulating
GT from a higher spectral resolution airborne sensor, and us-
ing it as initial training data for a CNN model. By applying a
state-of-the-art spectral unmixing algorithm [13] to the above
airborne data, and adapting the acquired images to the spa-
tial and spectral resolutions of VENµS, we can train a CNN
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Fig. 1: FENIX flight strip over Israel

to classify VENµS images to several predefined endmembers
(EMs). This approach may help provide initial classification
of incoming VENµS images, without any GT, as part of a
more comprehensive effort of processing time-series VENµS
data on a continuous basis.

The paper’s contributions are as follows: (1) Introduction
of a novel GT simulation for training a DL-classification
model without manual labeling, (2) presentation for the
first time of classification results for the recently launched
VENµS satellite over a Mediterranean region that is of much
interest (as far as climate change is concerned), i.e., the re-
sults can serve as a baseline for comparison with further
methods, and (3) providing simulated data that will allow us
to train more sophisticated models (such as fully convolu-
tional neural network [14]) or explore more complex tasks,
such as spectral unmixing using neural networks, for further
processing of VENµS data.

2 Background
2.1 FENIX
A FENIX airborne scan took place on April 04, 2017 under
clear sky conditions, along a transect from the Beit-Guvrin
area (representing a semi-arid region with a rainfall rate of
450[mm/year]) to Lehavim (representing a desert fringe zone
with 250[mm/year] rainfall). The scan was carried out over
a 35-[km] long strip with a swath of 1.5[km] (Figure 1).
A SPECIM AisaFENIX 1K airborne system was mounted
on a Cessna 172 airplane flying at an altitude of 1,828[m]
above sea level over a topographic area with an average
height of 250[m]. The system consisted of VNIR and SWIR
instruments, yielding a ground sampling distance of 1[m],
and having wavelength ranges of 380-970[nm] (at 4.5[nm]
spectral resolution) and 970-2500[nm] (at 12[nm] spectral
resolution), respectively. The spectral bands were resampled
into 41 bands of 5[nm] width in the wavelength range of
400-2400[nm].

2.2 VENµS
The VENµS satellite carries a super-spectral camera charac-
terized by 12 narrow spectral bands ranging from 415[nm]
to 910[nm]. The radiometric resolution for all bands is 10
bits and the spatial resolution is 5[m]. The spectral resolu-
tion at the Vis-NIR range is 40[nm], and 16[nm] and 20[nm],

respectively, for the red edge and water vapor bands. Each
experimental site is of size 27 × 27[km], with a 2-day revisit
time.

2.3 Spectral Unmixing
Given a spectral image and the spectra of a set of distinct EM
materials, the spectral unmixing process allows for extract-
ing quantitative subpixel information by estimating the abun-
dance fraction of each EM, in each pixel. Assuming a linear
mixture model (LMM), we write the spectral signature of each
pixel as follows:

m = Ef + n

where m = [m1, ..., mλ]
T is a signature of mixed pixel, λ

is the number of spectral bands, E ∈ Rλ×d is the matrix of
d EMs, f ∈ Rd×1 is a vector of the corresponding fractions,
and n ∈ Rλ×1 represents the system noise and assumed to
be Gaussian with zero mean. Requiring a fully constrained
solution, the unmixing problem is solved subject to two con-
straints: fi ≥ 0 for i = 1, . . . , d, and fT1 ≤ 1, where
1 ∈ Rd×1 is a vector of ones. In our case, we use the vec-
torized code projected gradient descent unmixing (VPGDU)
method [13]. VPGDU combines the projected gradient de-
scent (PGD) and an exact line search strategy to optimize
an objective function that is based on spectral angle mapper
(SAM).

2.4 Convolutional Neural Network (CNN)
CNNs have shown excellent performance in various visual
perception tasks, such as object detection, object classifica-
tion, semantic segmentation, etc., by exploiting the local con-
nectivity between adjacent pixels. Recently, CNNs have also
been used successfully for classification of hyperspectral im-
ages; see, e.g., Hu et al. [9], Makantasis at el. [10], and Yue
et al. [11].

3 PROPOSED METHOD

3.1 Overview
Figure 2 illustrates the framework of the proposed method. It
consists of three parts: (1) Ground truth simulation, (2) train-
ing a CNN model, and (3) evaluating its classification on a
real VENµS image. In the first part, a spectral unmixing al-
gorithm is executed on higher-resolution images using pre-
defined labels and their estimated abundance vectors in order
to extract fraction vectors. The original images are then ag-
gregated and adjusted to match VENµS’s spatial and spectral
resolutions. In the second step, we use spatial patches around
each labeled pixel to train a deep CNN. Finally, we apply the
trained network to a calibrated VENµS L1 image to obtain its
classification map. The proposed method is described below
in detail.



Fig. 2: Architecture of proposed method: CNN trained using
simulated GT from hyperspectral image, and then used for
classification of mid-resolution image.

Fig. 3: Illustration of synthesized GT pixel labels based on
unmixing results.

3.2 Ground Truth Simulation
We simulate plausible GT for VENµS by converting a given
FENIX image (at 1[m] resolution). Non-contiguous regions
of 5 × 5 pixels are aggregated to a single pixel (at 5[m] res-
olution), and only the bands matching VENµS’s spectral res-
olution are selected. To synthesize the GT labels (Figure 3),
we first generate fraction maps of the high-resolution FENIX
image (by applying VPGDU with respect to the seven EMs
selected). The label assigned to a given pixel of the simulated
VENµS image is the EM for which the aggregated fractions
(over the corresponding 5× 5 region in the FENIX image) is
the greatest.

3.3 Training Neural Networks
The simulated input images are split to small patches [15]
[16]. Each patch contains a spatially correlated area around
a specific pixel and its label as explained above. This allows
for creating a large amount of label samples for training.

We examined several DL models for the classification
task; the best results were achieved for a deep CNN model.
The proposed network receives an n × m × b input matrix
(where n, m are the patch dimensions, and b is the number
of spectral bands). It consists of L convolution layers with a
decreasing amount of filters per layer. Because of the rela-

tively small input size, max-pooling layers are not necessary
to simplify the dimensions of the model. Finally, the output
of the last convolution layer is flattened and fed into a number
of fully connected layers. The softmax activation function
is applied to the last layer’s output for creating classification
fractions. The output label of the center pixel of the patch is
determined by the class of the greatest fraction.

In addition, due to the unbalanced amount of samples per
label, data augmentation and denoising layers are added to
prevent the network from over-fitting to the most frequent la-
bels. Adding Gaussian noise, random rotations and image
mirroring are used for creating balanced label counts per sam-
ple. Batch normalization [17] and dropout [18] layers are also
added between hidden layers to insert noise into the training
process.

3.4 Evaluating on New Dataset
The classification due to the trained network can be “trans-
ferred” to new images acquired over similar geographical re-
gions with the same EMs. This is applied to VENµS images
at the L1 level (that were geographically calibrated to clean
background noises while preserving spatial resolution). Im-
age patches (from the real VENµS image) are then fed into
the trained network as before to obtain a classification label
for their center pixels.

4 EXPERIMENTAL RESULTS
4.1 Datasets
The suggested procedure has been tested on simulated and
real VENµS images for quantitative/visual assessment.

The simulated training data was acquired from the FENIX
dataset by taking the the six most relevant areas, with an av-
erage picture size of 400× 100 pixels.

The VENµS test data of size 6829 × 7824 pixels, with
a spatial resolution of 5[m] and 11 spectral bands 1, was ac-
quired over the S02 polygon of Israel [19] on June 15, 2018.
We worked with atmospherically corrected L1 products to
maintain the original spatial resolution.

The following seven EMs that match the common land
composition in this area were selected: Brown Soil, Light
Soil, Rock, Tall Tree/Shrub, Dwarf Shrub, Herbaceous, and
Dense Shrub/Burned Area.

4.2 Parameters and Details
To obtain reliable results, we conducted a 6-fold cross valida-
tion; each time one of the images was left out for testing, and
the rest were used for training and validation. Specifically, all
of the pixels of the latter images were randomly shuffled, and
each time 90% of these pixels were used for training and the
remaining 10% of the pixels for validation. Also, we normal-
ized the images, as part of preprocessing, by standardizing the

1band 6 is removed, as it is a duplication of band 5 for image quality



(a) False color composite(b) Ground Truth (c) CNN classification

Fig. 4: Visualization of the results obtained over the Avisure2
area.

values of each spectral band to have zero mean and a standard
deviation of 1.0.

After examining several patch configurations, we selected
5×5 patches (i.e., 25[m]×25[m] regions) around each pixel,
labeled according to the center pixel of the patch. To train
a balanced model with a similar count of samples per label,
data augmentation was applied via horizontal/vertical flips,
rotations by 90◦, 180◦, and 270◦, and addition of Gaussian
noise with zero mean and 0.1 standard deviation. During each
epoch, 30,000 samples per label (for a total of 210,000 sam-
ples in each epoch) were created using a combination of the
above techniques.

The full network architecture is shown in Figure 2. For
the CNN model, we used 4 layers of 3× 3 convolution filters,
with a different amount of filters per layer, i.e., 64, 64, 32,
and 16 filters, respectively. Batch normalization layers are
used (before applying a ReLU activation function), as well as
dropout layers with a rate of 25%. The CNN is followed by 3
fully connected layers with an output size of 7 neurons. (The
hidden layers are activated using the ReLU function, while
the output layer uses softmax activation.)

The following hyperparameters were arrived at after var-
ious tuning attempts: Batch size = 64, cross entropy loss
function, and Adam optimizer with a learning rate of 0.001.
All weights were randomly initialized. The deep neural net-
work was implemented using the Python programming lan-
guage with TensorFlow as the DL framework. The network
was trained over 200 epochs using backpropagation on a PC
equipped with Intel Core I7 and Nvidia GeForce GTX 1080
Ti GPU.

Testing Image Validation Accuracy Test Accuracy

Amazya1 80.67% 69.40%
Avisure1 82.65% 69.97%
Avisure2 80.61% 75.08%
Between1 80.48% 70.96%
Between2 82.49% 73.27%
Lehavim1 80.80% 76.71%
Overall 81.29% 72.56%

Table 1: Classification results on FENIX test images.

4.3 Results
Table 1 reports the classification results obtains by the pro-
posed network on the 6 test images. The average accuracy
obtained was ∼ 72.6%. Although the quantitative results are
not extremely high, visual assessment reveals a notable simi-
larity between GT and the classification maps for large parts
of the simulated and real VENµS images (Figures 4 and 5,
respectively). This should attest to the good promise of our
baseline method for further classification of new VENµS im-
ages.

5 CONCLUSION
We proposed a novel method for GT simulation of mid-
resolution data by applying unmixing to high-resolution hy-
perspectral images. This allows to overcome a fundamental
problem in remote sensing, i.e., a severe lack of labeled data.
The simulated data was used for initial training of a CNN
for pixel-based classification, as part of an ongoing project
of temporally evolving CNNs for the analysis of the ecolog-
ical mapping of Mediterranean environments using VENµS
images.
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