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Abstract— Several regions remain poorly studied in terms of 

geological mapping and mineral exploration in inaccessible 

regions especially in the Arctic and Antarctica due to harsh 

conditions and logistical difficulties. Application of specialized 

image processing techniques is capable of revealing the hidden 

linearly mixed spectral sources in multispectral and 

hyperspectral satellite images. In this study, the application of 

Constrained Energy Minimization (CEM) algorithm was 

evaluated for the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) remote sensing data for 

geological mapping in Morozumi Range and Helliwell Hills areas, 

Northern Victoria Land (NVL), Antarctica. The results of this 

investigation demonstrate the capability of the algorithms in 

distinguishing subpixel targets in the multispectral satellite data. 

The application of the method for identifying poorly exposed 

geologic materials and subpixel exposures of alteration minerals 

has invaluable implications for geological mapping and mineral 

exploration in inaccessible regions. 

Keywords— CEM; ASTER; SWIR bands; alteration minerals; 
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I. INTRODUCTION  

 

Geological investigations in the Arctic and Antarctica confront 

many difficulties due to their remoteness and extreme 

environmental conditions. Largely, due to harsh conditions 

and logistical difficulties, many areas remain poorly studied in 

terms of geological mapping and mineral exploration point of 

view. Recently, few studies emphasized the application of 

remote sensing satellite imagery for geological mapping in the 

Arctic and Antarctic environments [1,2]. 

In particular, remote sensing satellite imagery has high 
potential to provide a solution to overcome the difficulties and 
limitations associated with geological field mapping and 
mineral exploration in the inaccessible region such Antarctic 
environments. The Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) is a high spatial, spectral 
and radiometric resolution multispectral remote sensing 
sensor. It consists of three separate instrument subsystems, 

which provide observation in three different spectral regions 
of the electromagnetic spectrum, including visible and near-
infrared (VNIR), shortwave infrared (SWIR) and thermal 
infrared (TIR). The VNIR subsystem has three recording 
channels between 0.52 and 0.86 µm with a spatial resolution 
of up to 15 m.  The SWIR subsystem has six recording 
channels from 1.6 to 2.43 µm, at a spatial resolution of 30 m, 
while the TIR subsystem has five recording channels, covering 
the 8.125 to 11.65 µm wavelength region with a spatial 
resolution of 90 m [3]. There is plenty of research that used 
ASTER data in mineral exploration and lithological mapping 
during last decade due to spectral characteristics of the unique 
integral bands of ASTER in VNIR, SWIR and TIR parts of the 
electromagnetic spectrum and the possibility of applying 
several image processing algorithms [4,5,6]. 

The highest percentage of exposed rocks and soils in 

Antarctica occurs along the Transantarctic Mountains (TAM) 

from the Pacific to the Atlantic side of the continent, 

especially in Northern Victoria Land (NVL) (Fig. 1), where 

over 5% of the emerged land is ice-free. Rocks now exposed 

in NVL were part of the over 4000 km long paleo-Pacific 

margin of East Gondwana during the Paleozoic time [7]. 

 

In this investigation, the application of Constrained Energy 

Minimization (CEM) algorithm is evaluated for detailed 

mapping of exposed lithologies and alteration mineral zones in 

Morozumi Range and Helliwell Hills regions of NVL using 

ASTER remote sensing data. The Morozumi Range and 

Helliwell Hills regions of NVL (Fig. 2) were selected for the 

present study because their exposed lithological units are 

located in the remote and inaccessible zone (between Gressitt 

and Rennick Glaciers of the NVL).  

 

II. MATERIALS AND METHODS 

A. Geology of the study area 

The Morozumi Range and Helliwell Hills are a group of hills 

and mountains located between USARP Mountains and 



Rennick Glacier in the WT (Figs. 1 and 2). Their extension is 

roughly NW-SE parallel to the orientation of the Rennick 

Glacier. The Morozumi Range igneous complex is composed 

of various intrusive rocks of Granite Harbour Intrusive (GHI) 

and hosts by the Morozumi phylites (Fig. 2). The 

metasedimentary units are unconformably overlain by the 

Permian sandstones of the Beacon Supergroup. The Helliwell 

Hills is 35 km long and 15 km wide, with average topographic 

relief of 400 m. The hills are characterized by the 

unconformity exposed along the long axis of the area. Granite 

Harbour Intrusive (GHI) and Willson metamorphic rocks 

occur in the west of the unconformity and Beacon Supergroup 

and Ferrar Dolerites in the east (Fig. 2). The similar 

unconformity can be traced in the central part of the 

Morozumi Range along its length [8]. 
 

 
Fig.1. Geological and tectonic sketch map of Northern Victoria Land (NVL). 

 

 
 
Fig.2. Google Earth image and geology map of the Morozumi Range and 
Helliwell Hills regions. 

B. Remote sensing data 

 

    An ASTER level 1T scene (Path/Row 068/111) covering 

the Morozumi Range and Helliwell Hills areas was obtained 

from U.S. Geological EROS (http://glovis.usgs.gov/). It was 

acquired on January 2, 2005. Sun elevation and azimuth were 

recorded as 34.665 and 53.756, respectively. Scene cloud 

cover is 4 % for the ASTER image used in this study. The 

ASTER images used in this study were pre-georeferenced to 

UTM zone 57 South projection using the WGS-84 datum. 

 

 

C. Data processing  

 

Preprocessing of ASTER data was also required before 

analysis. Crosstalk correction was performed on the ASTER 

datasets used in this study. FLAASH atmospheric correction 

algorithm was applied on SWIR subsystems of the ASTER 

datasets. To minimize the reflectance effects of snow, ice and 

cloud areas from ASTER scene a masking procedure was used 

to restrict image processing algorithms to just regions of 

exposed rock. The CEM is a target signature-constrained 

approach, which constrains the desired target signature with a 

specific gain while minimizing effects caused by other 

unknown signatures [9]. 

The CEM approach utilizes a finite impulse response (FIR) 

filter to linearly constrain a desired object with minimal 

interference from other unknown signal sources (Harsanyi 

1993). Let dCEM be the spectral signature of an object of 

interest. The goal is to design a FIR linear filter specified by 

an n-dimensional vector w=(w1,w2,L,wn)T that passes the 

desired signature dCEM by constraining its direction while 

minimizing its output energy that is caused by signal source 

vectors with directions other than the constrained direction. 

Specifically, let yi denote the output of the designed FIR filter 

resulting from the i-th image pixel ri. Then yi can be expressed 

by 
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the optimal weight is given from [10] as 

CEMnxn

T

CEM

CEMnxn

dRd

dR
1

1

  w



                                           (2) 

where Rnxn is the auto-correlation sample matrix of the 

multispectral image, and the CEM filter as a detector δCEM(r) 

on an image pixel vector r is given by 

http://glovis.usgs.gov/
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Particularly, the value of δCEM(r) resulting from Eq. (4) 

represents the estimated amount of the abundance fraction of 

the object signature dCEM contained in the image pixel r. 

Accordingly, the CEM implements a partial unmixing of 

spectra to estimate the abundance of user-defined endmember 

materials from a set of reference spectra (either image or 

laboratory spectra) [10]. 

In this analysis, the reference spectra of selected end-member 

minerals for performing CEM were extracted from the USGS 

spectral library version 7.0 [11]. Hematite, goethite, jarosite, 

alunite, kaolinite, muscovite, epidote, chlorite, calcite, quartz, 

opal and chalcedony were selected. To apply the CEM to 

VNIR+SWIR ASTER data, new covariance statistics were 

computed. Subspace background was implemented to remove 

anomalous pixels before calculating background statistics. The 

fraction of the background in the anomalous image was 

adjusted by the threshold of 0.750 for the entire image for 

calculating the subspace background statistics. Covariance 

matrix method was selected for the calculation. The results of 

CEM appear as a series of grayscale images, one for each 

selected endmember. Rule image classifier tool was used for 

post classification of the resultant images. They were 

classified by maximum value option, and 0.050 was selected 

as an appropriate threshold value for all resultant rule images. 

                     

 

III. RESULTS AND DISCUSSION 

 

Two spatial subsets of ASTER scene covering the Morozumi 

Range and Helliwell Hills areas were selected for 

implementation of the CEM algorithm herein. Fractional 

abundance of the target endmember minerals was detected 

using CEM algorithm for the selected zones, separately. 

Twelve fraction images resulted from this analysis for the 

selected zones, appear as a series of grayscale rule images, one 

for each selected endmember. Bright pixels (high Digital 

Number (DN) value) in each grayscale image show a high 

fractional abundance of the target mineral. The value in the 

rule image represents the subpixel abundance of the target 

mineral in each pixel. 

Figure 3 shows CEM classification image map for the 

Morozumi Range. Some target endmember minerals such as 

chlorite/hematite, goethite/jarosite/calcite and 

kaolinite/muscovite are spectrally governed the Morozumi 

Range and their corresponding fraction images map out the 

minerals’ distribution. Other minerals such as alunite, epidote, 

opal, chalcedony and quartz have less contribution in total 

mixed spectral features of the study zone (Fig. 3). 

             
Fig. 3. CEM classification image map for the Morozumi Range spatial subset 

zone. 

 

CEM classification image map for the Helliwell Hills region is 

shown in Figure 4. Analysis of the results indicates that 

goethite, chlorite, hematite and epidote are most dominated 

mineral assemblages in this zone. Jarosite, muscovite, 

kaolinite and alunite are shown the second fractional 

abundance of mineral assemblages, while calcite, opal, 

chalcedony and quartz have very low surface distribution in 

the Helliwell Hills region.    

Goethite, jarosite, hematite, chlorite and epidote show the high 

surface distribution in this zone, which are mostly associated 

with exposures of the Ferrar Dolerite and Beacon Supergroup 

(see Figs 2 and 4). However, goethite and jarosite are mostly 

detected with the Ferrar Dolerite due to the fact that they are 

alteration products of primary mafic minerals within this 

lithology. Chlorite, hematite, epidote and alunite are 

associated with the Beacon Supergroup and Wilson 

metamorphic. Small exposures of the Granite Harbour 

Intrusive (GHI) in the southwestern part of the selected zone 

show a fractional abundance of hematite, chlorite, goethite, 

jarosite, epidote, calcite and quartz, respectively (see Figs 2 

and 4). These mineral assemblages are present as the alteration 

products of primary feldspars and mafic minerals within these 

rocks, which are consistent with the lithologic variation from 

granite to granodiorite.  Rock samples were collected from 

altered and weathered lithological units for laboratory 

analysis. The X-ray diffraction (XRD) analyses were 

implemented on the bulk powder of the samples using a 

http://www.sciencedirect.com/science/article/pii/S0730725X1000072X#fd3


SmartLab® X-ray Diffractometer model for the identification 

of fine-grained minerals.    

       
Fig. 4. CEM classification image map for the Helliwell Hills spatial subset 

zone. 

 

The XRD analysis indicated that hematite, jarosite, goethite, 
chlorite, epidote, montmorillonite, kaolinite, muscovite, illite 
and quartz were the major minerals in the collected rock 
samples from the Ferrar Dolerite and Wilson metamorphic. 
The mineral assemblages detected in the collected rock 
samples from the Granite Harbour Intrusive (GHI) and Beacon 
Supergroup using XRD analysis consisted mainly of kaolinite, 
montmorillonite, muscovite, illite, calcite, chlorite, epidote, 
hematite and quartz. 

 

 

IV. CONCLUSIONS 

 

The application of Constrained Energy Minimization (CEM) 

algorithm was evaluated for detailed mapping of exposed 

lithologies and alteration mineral zones in Morozumi Range 

and Helliwell Hills region of NVL using ASTER remote 

sensing data. Fraction images of endmember target minerals 

such as hematite, goethite, jarosite, alunite, kaolinite, 

muscovite, epidote, chlorite, calcite, quartz, opal and 

chalcedony were produced using CEM algorithm for two 

spatial subsets of ASTER scene covering the Morozumi 

Range and Helliwell Hills areas. CEM classification image 

maps indicated that chlorite/hematite, goethite/jarosite/calcite 

and kaolinite/muscovite are governed in the Morozumi Range 

and goethite, chlorite, hematite and epidote are most 

dominated mineral assemblages in the Helliwell Hills area. 

The results of the investigation demonstrate that these 

algorithms hold great potential for geological mapping 

applications and should be of special interest for Polar Earth 

scientists who might have very limited ground truth, for 

geologic mapping in areas with significant vegetative cover as 

well as for mineral exploration by enabling the detection of 

subpixel exposures of minerals indicative of hydrothermal 

alteration zones.     
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