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ABSTRACT

Multitemporal phase estimation aims at the exploitation tem-
poral data redundancy within the SAR time-series to reduce
the impact of inherent stochastic and systematic interferomet-
ric phase inconsistencies [1] for distributed scatterers (DS).
The consistent phase-series estimated as such is further uti-
lized to retrieve the underlying geophysical and atmospheric
signals. Therefore, the precision and interpretability of the
retrieved physical signals from the DS is governed by the per-
formance of the phase estimators. Different approaches to
phase estimation calls for the investigation of their perfor-
mance. Here we explain the discrepancy among the differ-
ent approaches in terms of their underlying covariance model
and introduce our recently proposed estimator named EMI
[2]. Bridging between different approaches via revised math-
ematical formulation of phase estimation, EMI enhances the
estimation precision and computational efficiency of the tem-
poral phase estimation. The performance of different phase
estimators is brought into attention via simulation analysis.
Using Sentinel-1 time series over the North and East Anato-
lian Faults, wide area performance analysis is further carried
out and will be presented.

Index Terms— maximum likelihood estimation, esti-
mation efficiency, sample covariance matrix, interferometric
synthetic aperture radar, low-rank approximation

1. INTRODUCTION

Interferometric Synthetic Aperture Radar (InSAR) is an es-
tablished geodetic technique for retrieval of Earth surface de-
formation. The precision and accuracy of InSAR in geodetic
signal retrieval depend on the effective reduction of the er-
ror sources from the interferograms. Among such sources is
the signal decorrelation in multipass SAR acquisitions. It oc-
curs due to abrupt changes or stochastic variation of the po-
sition and/or dielectric properties of the sub resolution scat-
terers between acquisitions, introducing stochastic noise and
systematic error among the interferograms of a SAR time se-
ries. Referred to as stochastic and systematic phase inconsis-
tencies [1], such effects compromise the precision and inter-
pretability of the retrieved geodetic signals. In circumvent-
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ing these effects, geodetic signal retrieval may be limited to
phase-stable persistent scatterers (PS). In areas where PSs are
scarce, the exploitation of natural distributed scatterers (DS)
is inevitable. Temporal phase estimators are introduced to im-
prove the Signal to Noise Ratio (SNR) of the DSs within the
SAR time series. In contrast to the use of such estimators, the
temporal exploitation of SAR data may be limited to partially
coherent small baseline interferograms. The latter approach
simplifies geodetic signal retrieval for DSs, at the expense of
reduced precision.

Temporal phase estimators allow the retrieval of a time
series of consistent interferograms from all possible inconsis-
tent interferograms within a SAR time series. In doing so,
they effectively reduce the stochastic phase noise. Exploiting
the temporal data redundancy, they are theoretically expected
to be less susceptible to systematic inconsistencies as well [1].

Different approaches to temporal phase estimation may be
categorized to two groups, namely the Maximum Likelihood
Estimators (MLE) and the approximate Eigendecomposition-
based (EVD) estimators. Here we shed light on the un-
derlying model and pros and cons of these approaches
while introducing a new MLE which overcomes the dis-
advantages of the aforementioned approaches [2]. Called
Eigendecomposition-based Maximum likelihood estimator
of Interferometric phase (EMI), the proposed estimator is
shown to be efficient both in terms of estimation precision
and computational cost.

2. TEMPORAL PHASE ESTIMATION

Temporal phase estimation is considered for a DS region. Al-
low € as an ensemble of statistically similar pixels pertaining
to this region, a spatiotemporal aggregation of its correspond-
ing complex valued pixels reads as: Z € C™*!, where [ refers
to the spatial and n to the temporal domain. Based on the cen-
tral limit theorem, Z follows the zero-mean n variate complex
circular Gaussian distribution. Under the assumption of valid-
ity of this distribution, the second order moment of Z suffices
for the full description of data statistics. The sample coher-
ence matrix (SCM), hereafter denoted by C' € C™*", is the
MLE of the second order moment.
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The SCM presents the interferometric content of the DS
region concisely and sufficiently. It is a Hermitian matrix
whose off diagonal elements pertain to the n(n — 1)/2 in-
terferograms within the SAR time series.

Recalling that temporal phase estimation retrieves the
consistent common-master interferograms from the time se-
ries, it may be reformulated into the problem of modeling the
SCM [3, 2].

2.1. SCM information content

Allow the decomposition of the complex SCM to:

C = F [©] IQ7 (1)
i = |Cirl, 2)
(Io)ix = exp(jAdir), 3

where o represents the element-wise Hadamard product, j is
the imaginary unit and the subscripts refer to the elements of
the associated matrix. For a generic DS the coherence matrix
I is a full-rank symmetric matrix, its elements represent the
coherence of the associated interferogram. I on the other
hand is a low-rank matrix. In the absence of stochastic and
systematic phase inconsistencies, it degenerates to a rank-1
dyad. The sufficiency of a rank-1 dyad for description of I
indicates that the multi-master interferograms are redundant
and the geodetic signal is contained in a series of common-
master interferograms. The sought for this rank-1 dyad is the
purpose of phase estimators.

2.2. Different Approaches to SCM Modeling
2.2.1. Phase Triangulation Algorithm (PTA)

PTA is the pioneering approach in temporal phase estimation
[4, 5]. Its proposed SCM model reads as:

Y =Toyppl, )
P =exp(jo).

Here and after ¢ € R™*! represents the sought consistent
interferogram series, bold symbols indicate vectors. Accord-
ing to this model, the coherence matrix remains intact while
the I, is approximated by a rank-1 dyad. Fitting this model
through the maximization of the Wishart distribution [3], PTA
may be shown to be a MLE [4, 5].

Being MLE, PTA is asymptotically an optimum estimator;
it is unbiased and its variance attains the Cramer-Rao Lower
Bound (CRLB) for temporal phase estimation [6]. The PTA
is however sensitive to the estimation performance of the co-
herence matrix I' [7]. The latter is notoriously known to be
sub-optimum for low coherence level and small [. PTA es-
timates the phases through a non-linear optimization scheme
with subjective choice of initialization [2]. Therefore its com-
putational expense poses a challenge to Big Data processing

[71.
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2.2.2. Eigendecomposition based approaches (EVD)

Retrieving the consistent interferograms by means of Eigen-
decomposition of the complex covariance or complex coher-
ence matrix was proposed by [8] and [9], respectively. In the
context of temporal phase estimation, we formulate the un-
derlying SCM model of EVD approaches as:

Y =Xaa’ o ¢¢H, 5

with  aeR™.

According to this model, not only the low-rank I but also
the full-rank coherence matrix I' are approximated by rank-1
dyads. The second approximation is mathematically unjusti-
fiable.

Using Eigendecomposition, EVD approaches may enjoy
an arsenal of highly efficient numerical recipes for the task
of phase estimation. Therefore, they are computationally ef-
ficient and well suited to the processing of long SAR time
series. However, the EVD’s model inadequacy affects the es-
timation efficiency of these estimators as compared to MLEs
and the CRLB [2]. EVDs therefore provide an approximate
solution to temporal phase estimation.

2.2.3. The proposed approach: EMI

Comparing the pros and cons of the PTA and EMI, a trade-off
is observed between the estimation and computational effi-
ciency. To optimize this trade-off and overcome the limita-
tions of the latter approaches, we increase the model com-
plexity for estimation of SCM by proposing:

¥ =T oy o Aaa, (6)

This model resembles the PTA model with a distinct differ-
ence. It allows a second rank-1 dyad of Aaal, which is
seemingly redundant in comparison to Eq. (1). The latter
rank-1 dyad serves a purpose when I' matrix is erroneous. It
allows for the calibration of I' or in other words relaxes the
strict model proposed by PTA. Furthermore, in order to gain
computational efficiency, the MLE based on this model is re-
formulated into a Lagrangian [2] and solved via the Eigende-
composition of the matrix product: '~ o C.

The proposed approach is well suited to high-precision
estimation of the consistent interferograms. It outperforms
the state-of-the-art. However, the increased model complex-
ity may be insufficient, should the estimated I" have severely
degraded performance compared to its nominal behavior
[2]. The latter disadvantage holds for the EVD and PTA
approaches as well.

3. THE IMPACT OF EMI: SIMULATION ANALYSIS

The estimation efficiency of temporal phase estimators is gov-
erned by the coherence of the exploited interferograms [6].
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Fig. 1: Performance assessment of different estimators compared to CRLB using simulated cases: (left) the considered coherence matrices for
simulations, (right) the RMSE of estimated consistent interferograms for different approaches. Dependent on the estimation efficiency of the
coherence matrix, the two MLE approaches of EMI and PTA perform identically close to the CRLB. Is the coherence estimation suboptimum
(as in the bottom row), EMI gains in phase estimation efficiency thanks to its increased model complexity. Incorporating an approximate
SCM model, the EVD approach is observed to be sub-optimum as its performance deviates from the CRLB.

For the demonstration of this dependency as well as the be-
havior of the reviewed estimators, we choose two coherence
structures here. These coherence matrices are selected from
real data processing of Sentinel-1 data. Based on the chosen
coherence matrices and assuming the CCG distribution, time
series of 38 SAR acquisitions each containing an ensemble
of [ statistically similar samples is simulated. A linear defor-
mation signal with velocity of 1 mm/year is assumed for the
simulations. The simulated complex ensemble is used in the
evaluation of SCM and further in temporal phase estimation
with PTA, EVD and EMI approaches. The Root Mean Square
Error (RMSE) of the estimated phases compared to the simu-
lated deformation phase is taken as a measure for the perfor-
mance of phase estimators. This measure encapsulates both
the bias and the variance of the estimators. RMSE is evalu-
ated based on 3000 trials of the experiment for each estimator.
The CRLB is provided as a lower bound for estimation error.
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Fig.2 depicts the performance analysis for the two cases.
In the first case (top row), as seen from the coherence matrix,
the majority of the interferograms are moderately coherent,
rendering the precise estimation of coherence matrix. In the
event of precise estimation of the coherence matrix, the EMI’s
considered calibration dyadic is redundant and the two MLE-
based estimators are expected to perform identical. This ex-
pectation is corroborated by the RMSE plot, as the PTA and
EMI are shown to identically attain to the lowest error bound
provided by CRLB. The performance of the EVD estimator
is however seen to be compromised due to its model insuffi-
ciency.

In the second simulation case (Fig. 2, bottom row), we
deliberately chose a coherence matrix which partially decays
to zero level. For such coherence level, the estimation of the
coherence matrix is known to be suboptimum [10]. Compar-
ing the performance of the three estimators in this case reveals



the sensitivity of the PTA approach to the suboptimum esti-
mation of coherence matrix. The EMI however is capable of
retaining a performance close to the CRLB, thanks to the con-
sideration of the calibration dyad in its SCM model. Being an
approximate approach, EVD is expected and shown to deviate
from the CRLB.

4. EXPERIMENTS WITH REAL DATA

The performance of the different phase estimators in process-
ing 2-year time series of Sentinel-1 data has been previously
carried out on the volcanic island of Vulcano [2]. Result
shows the decrease of phase estimation variance specially for
short temporal baseline interferograms while circumventing
PTA’s convergence problems in the optimization [2].

In this work the intention is to demonstrate the perfor-
mance analysis in wide area processing using Sentinel-1 data;
as we previously carried out in [11]. The focus is on eval-
uation of estimation bias and variance. The initial analysis
confirms the conclusions drawn from the Vulcano test site.
Further analysis is ongoing and will be presented at the con-
ference.

5. SUMMARY AND CONCLUSION

The discrepancies of different temporal phase estimators for
interferogram stacks have been formulated in terms of their
equivalent SCM model. EMI approach is proposed to allow
for improvement of this model via the addition of a calibration
dyadic. The latter relaxes the strict model of PTA in order to
arrive at more efficient phase retrieval at low computational
cost.

Investigating the impact of different phase estimators in
processing large areas with variety of land covers allows to
gain more insight into the potential and limitation of the phase
estimators. An example of such analysis was previously re-
ported over Trans-Mexican Volcanic Belt [11]. Further wide
area processing results will be presented at the conference.

The impact of bias and efficiency of phase estimation on
deformation signal is a closely related topic to multitemporal
phase estimation. We embarked on the quantitative evaluation
of phase bias and variance in [11]. Although crucial in the re-
liability assessment of deformation estimation, such analysis
are mostly overlooked by the INSAR community. The latter
study is extended here by investigating the inevitable impact
of phase estimation quality on deformation maps. The result
of such investigations will be presented at the conference.
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