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ABSTRACT

In the last few years, deep learning (DL) has been success-
fully and massively employed in computer vision for discrim-
inative tasks, such as image classification or object detection.
This kind of problems are core to many remote sensing (RS)
applications as well, though with domain-specific peculiar-
ities. Therefore, there is a growing interest on the use of
DL methods for RS tasks. Here, we consider the forest/non-
forest classification problem with TanDEM-X data, and test
two state-of-the-art DL models, suitably adapting them to the
specific task. Our experiments confirm the great potential of
DL methods for RS applications.

Index Terms— Deep Learning; Convolutional Neural
Network (CNN); Vegetation Monitoring; Forest Classifica-
tion; TanDEM-X.

1. INTRODUCTION

The monitoring of the state and health of forests is of pri-
mary importance for several reasons, such as the prevention
of floods and landslides, the reduction of CO-, or the preser-
vation of biodiversity. Thanks to the wide availability of op-
tical, multispectral and synthetic aperture radar (SAR) data
from a variety of sensors, such phenomena can be observed
on a global scale provided that adequate processing tools are
available.

Optical images carry rich discriminative information
about vegetation and are widely employed. The Normalized
Difference Vegetation Index (NDVI) is a notable example of
a standard and simple vegetation indicator that is extracted
through a straightforward combination of spectral bands [[1].
More specific indicators can also be derived from multispec-
tral images, like the Enhanced Vegetation Index (EVI), more
suited to discriminate canopy [2l]. However, the use of opti-
cal data is severely undermined by their dependence on the
weather conditions, which can be only partially mitigated
through multitemporal processing and data fusion techniques
[3,14,15]]. On the contrary, SAR data are almost weather insen-
sitive and carry precious information related to ground geom-
etry and electromagnetic propagation [6]]. In [7] SAR images
obtained in different bands are combined for land cover clas-
sification. In [8| 9], the TanDEM-X forest/non-forest map is

generated from TanDEM-X bistatic interferometric images,
by linking the presence of vegetation to the retrieved InSAR
volume decorrelation.

In this work we focus on this latter problem, and experi-
ment with deep learning solutions based on some state-of-the-
art models. Specifically, we define and train from scratch two
DL architectures following the ResNet [10] and the DenseNet
[L1] models, respectively. These are adapted to the problem
at hand and to the available dataset, also through the defini-
tion of suitable loss functions. Forest/non-forest classification
maps obtained for a test area located in Pennsylvania con-
firm the great potential of DL approaches for RS classification
tasks. In Section[2] we describe the approach and the details
of the two proposed DL networks. Performance indicators,
dataset, and experimental results are presented in Section 3]
Finally, conclusions are drawn in Section 4]

2. PROPOSED DEEP LEARNING APPROACH

Deep learning models are characterized by an extremely large
number of parameters to be trained, ranging from hundreds of
thousands to billions, and organized in interconnected layers
in order to generate a hierarchy of representations of the input.
Convolutional Neural Networks (CNN5s) are a popular family
of DL models, particularly suited to solving image processing
problems. In fact, under the assumptions of locality and shift-
invariance, they adopt limited receptive fields and weight re-
use, thereby ensuring a drastic reduction of the number of
free parameters. In this work, we consider two state-of-the-art
CNN models, ResNet [10] and DenseNet [11], which are par-
ticularly appealing as they can be reach a considerable depth
avoiding vanishing gradient problems during training. Both
solutions are modular, allowing to build a variety of different
architectures, from a simple cascade structure of an arbitrary
number of layers to multipath architectures differing in the
layer definition. For both models, we describe here only the
main functional aspects of interest for the present work, refer-
ring to the original papers [10, |1 1] for a thorough description
of the network architecture.

In DenseNet, each layer is “densely” connected to all pre-
ceding ones. Therefore, the input of the [-th layer is obtained
by concatenating the output features from all previous [-1 lay-
ers, not just the previous one. This approach, with direct



connections between each pair of layers, mitigates vanish-
ing gradient and overfitting problems for large scale tasks.
In ResNet, instead, the training phase is shortened by using
stages (one or a few consecutive layers) whose output is the
combination of the input (via skip connection) with the ac-
tual outcome of the trainable backbone. Although function-
ally unnecessary, skip connections have proven to speed-up
the training [10, [12]]

Here we propose for both models a cascade architecture
with six convolutional layers with 3x3 kernels interleaved
by ReLU (Rectified Linear Unit) activation functions [13].
Moreover, in order to output a classification probability map,
an additional 1x1 convolutional output layer with a sigmoid
activation function completes the network. The hyperparam-
eters of the networks are summarized in Table[Il The 3-band
input stack is formed by the SAR backscatter 3y, the inter-
ferometric coherence, and the local incidence angle, the latter
obtained from the acquisition geometry and an external refer-
ence digital elevation model.

2.1. Training

In this work we exploit the same dataset used in [8]], described
in Section [3] including the ground-truth reference which is
given in terms of density of forest in a squared area of 6x6
meters. In order to train the network we explored two differ-
ent objective loss functions. The former combines two losses
commonly used for classification and segmentation, based on
cross-entropy (Lpce) and on the Jaccard distance (L ). The
latter includes also the L, norm, in order to reduce the abso-
lute difference between the reference and the predicted den-
sity map. In formulas, the cross-entropy loss reads as

1 N
Lyce = _N Z [yn 1Og (yn) + (1 - yn) 1Og (1 - yn)] >
' (1)

with IV being the number of pixels in a training batch, y,, the
class membership degree of pixel n according to the ground-
truth and g,, the membership estimated by the network. The
Jaccard distance loss, which aims to maximize the overlap
between the two maps [[14], is defined as

Ly=1- 2on [%” ] . )
Zn [yn + Yn — Yn - yn]
Finally, the L; norm is
L=~ g — gl (3)
1= N a Yn — Yn]| -

The minimization of the loss function is performed using
the ADAM algorithm [15], a gradient descend variant where
the learning rate is updated at each iteration using estimates
of low-order moments.

'We assume the ground-truth density map as membership degree.

3. EXPERIMENTAL RESULTS

The region of interest of the available dataset is located in
Pennsylvania (USA). We used 18707 tiles of 128 x 128 pixels
for training (90%) and validation (10%). Tiles are grouped in
mini-batches of 32 samples for the iterative optimization. For
each configuration the initial learning rate was set to 10~% and
the training was carried out from scratch for 20 epochs | Five
large images not used for training, of about 1800x 1450 pix-
els, were used to test the performance of the proposed meth-
ods. These latter were chosen to be representative of the dif-
ferent environmental contexts.

Two performance indicators related to classification accu-
racy and segmentation accuracy are considered. Following
the methodology used in [8] we have chosen the accuray in-
dicator ACC, a widespread quality index for binary classifi-
cation problems, defined as

B TP+TN
"~ TP+FP+TN+FN’

where TP, TN, FP, and FN count true positive, true negative,
false positive, and false negative pixels, respectively. In addi-
tion, in order to measure performance from the perspective
of segmentation, we also considered the Intersection-over-
Union (IoU) indicator, which is the intersection between pre-
dicted and reference masks over their union. For binary masks
it is given by

ACC “)

TP

~ TP+FP+FN’ ©)
Both indicators fall between 0 (worst case) and 1 (ideal pre-
diction). Notice that the above definitions apply for binary
images while the network is trained on probability values.
Therefore, to make them suited to our problem we decided to
properly threshold both reference and predicted maps to get
the needed binary masks. To this end we followed the same
criterion used in [8], maximizing the Pearson coefficient ¢
with respect to the threshold pair (one for prediction, one for
reference). This coefficient is defined as

_ TP-TN — FP-FN
~ VP-RP-RN-N'

where P[N] is the total number of positives[negatives] in the
prediction map, RP is the number of positives in the reference
(RP=TP+FN) and, conversely, RN is the number of negatives
in the reference (RN=FP+TN). The Pearson coefficient is a
sort of correlation coefficient which takes values between -1
and +1. The threshold pair that corresponds to the maximum
value of ¢ is the optimal choice according to this criterion (see
[8] for a deeper discussion). In our implementation we used
part of the validation set to find the optimal thresholds.

By doing so we eventually collect the performance indi-
cators gathered in Table [2] and Table [3] for IoU and ACC,
respectively.

TIoU

¢ (6)

2 A pass on the whole training dataset.



ConvLayer 1 ConvLayer 2 ConvLayer 3 ConvLayer 4 ConvLayer 5  ConvLayer 6 ConvLayer 7
Shape (ResNet) 64x3x3x%x3 64x64x3x3  64x64x3x3  64x64x3x3 64x64x3x3 64x64x3x3 1x64x1x1
Shape (DenseNet) 64x3x3x3  64X67x3x3  64x131x3%x3 64x195x3x3 64Xx259%x3x3 64x323x3x3 1x64x1x1
Activation ReLU ReLU ReLU ReLU ReLU ReLU sigmoid

Table 1. CNNs’ hyper-parameters. Shape: # features x # channels x 2D support.

Region 1 Region2 Region3 Region4 Region 5

Baseline 0.4540  0.4592 04245 0.6897  0.4644
ResNet 0.5960  0.6242  0.6915  0.8128  0.5686
ResNet (+L1) 0.6013  0.6362  0.7025 0.8354  0.5885
DenseNet 0.6062 0.6354 0.7087 0.8306  0.5946
DenseNet (+L1) 0.5936  0.6105  0.6868  0.8175  0.5746

Table 2. Intersection-over-Union comparison. +L; marks
models trained using the full loss L = Ly.. + L+ L1, other-
wise limited to the first two terms.

Region 1 Region2 Region3 Region4 Region5

Baseline 0.6032  0.5964 0.6030 0.7636  0.8083
ResNet 0.8205 0.8290 0.8769  0.8766  0.9014
ResNet (+L7) 0.8125 0.8259 0.8771  0.8901  0.9023
DenseNet 0.8231  0.8309 0.8841  0.8889  0.9097
DenseNet (+L21) 0.8266  0.8241  0.8788  0.8829  0.9107

Table 3. Accuracy comparison.

The numerical results speak clearly in favor of the pro-
posed DL solutions, with DenseNet slightly outperforming
ResNet, on average. The use of the L; norm provides a neg-
ligible contribution, likely because the other two loss terms,
based on cross-entropy and Jaccard distance, are directly re-
lated to ACC and IoU, respectively. It has to be remarked that
for a fair comparison with the proposed methods, the baseline
solution of [8]] was used without masking any class, contrar-
ily to what is done in the original formulation. Specifically, in
[8] city and water classes are excluded by means of available
masks, because forests, cities and water classes all exhibit a
low volume correlation, the core feature proposed to classify
forests.

For a further analysis of the performance of the proposed
solutions we show some sample images to highlight merits
and critical aspects of our proposal. In Fig[l] a case is shown
where our proposals work fairly well. In this case, the base-
line method also provides results that are coherent with the
reference, but rather noisy. In Fig[2]the occurrence of a lim-
ited number of false positive (on bridges) can be easily ob-
served for all DL methods. Moreover, some oversmoothing is
also noticeable. On the other side, the baseline method falls in
a typical failure case, where it is unable to discriminate among
forests, water and man-made areas.  Finally, Fig[3] shows a
detail where all methods present many false negatives. How-
ever, the consistency between all predictions suggests that ei-
ther a change in the scene occurred with respect to the refer-
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Fig. 1. The mask produced by deep learning approaches are
clean compared to the baseline.

ence, or radar data are unable to identify vegetated areas, in
this case, due to a more complex backscattering mechanism.

4. CONCLUSIONS

In this work, we explored the use of deep learning methods for
a forest/non-forest classification problem based on TanDEM-
X data. Despite the limited amount of labeled data available
for training, the proposed methods show very promising re-
sults, in terms of both objective numerical figures and subjec-
tive visual assessment. More accurate results, especially in
fine details preservation, can be certainly obtained by using
larger datasets for training, more sophisticated DL architec-
tures, or additional hand-crafted features, which is the goal of
our future work.
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Fig. 2. False positives and oversmoothing for DL solutions
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Fig. 3. False negatives for all.
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