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ABSTRACT
Recently, deep learning algorithms, especially fully convolutional
network based methods, are becoming very popular in the field
of remote sensing. However, these methods are implemented and
evaluated through various datasets and deep learning frameworks.
There has not been a package that covers these methods in a unify-
ing manner. In this study, we introduce a computer vision package
termed Geoseg that focus on building segmentation and outline
extraction. Geoseg implements over nine state-of-the-art models
as well as utility scripts needed to conduct model training, logging,
evaluating and visualization. The implementation of Geoseg empha-
sizes unification, simplicity, and flexibility. The performance and
computational efficiency of all implemented methods are evaluated
by comparison experiment through a unified, high-quality aerial
image dataset.

CCS CONCEPTS
• Information systems→Geographic information systems; •Com-
puting methodologies→ Computer vision; Image segmentation;

KEYWORDS
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1 INTRODUCTION
Automatic, robust, and accurate image segmentation is a long ex-
isting challenge in computer vision. Over the past decades, many
supervised or unsupervised methods are proposed to handle this
task [1, 2]. However, due to the limitations of both the quality
of dataset and processing algorithm, the precision level of these
methods are quite limited [3]. Recent years, thanks to the rapid de-
velopment of deep convolutional neural networks (DCNNs) as well
as the dramatically increased availability of large-scale datasets,
the performances show significant improvement in many image
segmentation tasks [4, 5].

Differ to ordinary images, because of cost, technical requirement
and sensitivity of national defense, it is rather difficult to get very
high-resolution (VHR) aerial imagery in the field of remote sensing.
And, the lack of large-scale, high-resolution dataset limits the devel-
opment of accurate building segmentation and outline extraction.
Recently, due to rapid evolution of imaging sensors, the availabil-
ity and accessibility of high-quality remote sensing datasets have
increased dramatically [6, 7]. On the basis of these datasets, many
well-optimized and innovative methods, including different vari-
ants of fully convolutional networks(FCNs), have been developed
for the purpose of accurate building segmentation [8]. Generally,

these methods achieve the state-of-the-art accuracy or computa-
tional efficiency under corresponding datasets. However, since these
methods are trained and evaluated through different datasets, it is
hard to have an in-depth comparison of performances of various
models. Additionally, although the datasets are open-access, the im-
plemented models or algorithms are usually not revealed in details
by the authors.

Facing this problem, we introduce Geoseg (https://github.com/
huster-wgm/geoseg), a computer vision package that is focus on im-
plementing the state-of-the-art methods for automatic and accurate
building segmentation and outline extraction. The Geoseg package
implements more than 9 FCN-based models including FCNs [9],
U-Net [10], SegNet [11], FPN [12], ResUNet [13], MC-FCN [14], and
BR-Net [15]. For in-depth comparison, balanced and unbalanced
evaluation metrics, such as precision, recall, overall accuracy, f1-
score, Jaccard index or intersection over union (IoU) [16] and kappa
coefficient [17], are implemented.

The main contributions of this study are summarized as follows:
• We build a computer vision package that implemented sev-
eral state-of-the-art methods (i.e., BR-Net) for building seg-
mentation and outline extraction of very high-resolution
aerial imagery;

• We have carefully trained and evaluated different models
using the same dataset to produce a performance benchmark
of various models.

• The package is optimized and opened to the public that
other researchers or developers can easily adopt for their
own researches.

The rest of the study is organized as follows: the related work is
presented in Section 2. The benchmark dataset and implementation
details of the experiments are described in Section 3. In Section
4, the results and discussion of different models are introduced.
Conclusions regarding our study are presented in Sections 5, re-
spectively.

2 RELATEDWORK
To assist deep learning researches or applications, there are several
deep learning frameworks. According to the compiling mechanism,
these frameworks can be categorized into two groups: static and
dynamic framework. Static frameworks, such as Caffe 1 and Ten-
sorFlow 2, construct and compiled completed model before train-
ing and updating parameters. For dynamic frameworks, such as
Chainer 3 and PyTorch 4, at every iteration, only executed part
1http://caffe.berkeleyvision.org/
2https://www.tensorflow.org/
3https://chainer.org/
4https://pytorch.org/
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of the model is compiled. Compared with static frameworks, the
dynamic frameworks are less efficient but much flexible.

For different frameworks, there are "Model Zoo" packages that
implemented with various pre-trained deep learning models. How-
ever, most of the implemented models are focused on methods for
image classification. Even for image segmentation packages such
as ChainerCV 5, the implemented methods are quite limited, and
datasets are not relevant to aerial imagery.

As far as we know, Geoseg is the first computer vision package
that implemented with abundant deep learning models for auto-
matic building segmentation and outline extraction.

3 EXPERIMENTS
3.1 Benchmark Dataset
Thanks to the trend of open source, more and more high-quality
aerial imagery datasets are available. Among them, a very high-
resolution(VHR) aerial image dataset called Aerial Imagery for Roof
Segmentation(AIRS) (https://www.airs-dataset.com/) is published
most recently [18]. The spatial resolution of the dataset reaches
0.075 cm. The original orthophotos and corresponding building
outlines are provided by Land Information of New Zealand (LINZ)
(https://data.linz.govt.nz/layer/53413-nz-building-outlines-pilot/). For
the purpose of accurate roof segmentation, the vectorized building
outlines are carefully adjusted to ensure that all building polygons
are strictly aligned with their corresponding roofs.

To have a fair comparison of different methods, a study area of
AIRS that covers 32 km2 in Christchurch is chosen [15]. The study
area is evenly divided into two regions: training and testing. For
each area, there are 28,786 and 26,747 building objects, respectively.
Before experiments, both regions are processed by a sliding window
of 224 × 224 pixels to generate image slices (without overlap). After
filter out image slices with low building coverage rates from training
region, the number of samples in training, validation, and testing
data are 27,912 11,952 and 71,688, respectively.

3.2 Implementation
3.2.1 Code Organization. Geoseg is built on top of PyTorch with
version == 0.3.0 (updating to the latest version is scheduled). The
whole package is organized as Figure 1. There are 5 sub-directories
including dataset/, logs/, models/, result/ and utils/. The dataset/
directory contains all samples for training, validating and testing.
The logs/ directory records learning curves, training and validating
performance during model iterations. The models/ directory con-
tains scripts implemented with various network architectures of the
models. The visualization results are saved in result/ directory. The
utils/ directory implements scripts for handling dataset, running
instruction, evaluation metrics and visualization tools.

For scripts (e.g., FCNs.py, FPN.py, and UNet.py) at root directory
of Geoseg, demo codes for training, logging and evaluating specific
models are presented.

For scripts starting with "vis" (e.g., visSingle.py and visSingle-
Comparison.py), demo codes for result visualization of a single
model or various models comparison are implemented.

5https://github.com/chainer/chainercv

Geoseg:

  ├── dataset/

  │   └── train, validate and test dataset

  ├── logs/

  │   ├── learning curve, statistic, etc.

  ├── models/

  │   ├── fcn, fpn, u-net, segnet, etc.

  ├── result/

  │   └── visualization result of single or model comparison 

  ├── utils/

  │   ├── datasets.py

  │   ├── metrics.py

  │   ├── preprocess.py

  │   ├── runner.py

  │   └── vision.py

  │

  ├── FCNs.py

  ├── FPN.py

  ├── UNet.py

  ├── MC-FCN.py

  ├── BR-Net.py

  ├── ResUNet.py

  │  

  ├── visSingle.py

  ├── visSingleComparison.py

...

Demo codes for training 
model

Demo codes for result 
visualization

Figure 1: The code organization of Geoseg package. The
package implements model constructing, training, logging,
evaluating and result visualization modules.

3.2.2 Models. In Geoseg, we implemented over 9 FCN-based mod-
els according to the reports from original papers. Since the original
methods were implemented in various platform and used for vari-
ous sizes of input, Geoseg introduces few modifications on several
models for unification. The details of the implemented models are
listed as follows:

(1) FCNs. The classic FCNs method is proposed by Long et al.
at 2015. This method innovatively adopts sequential convo-
lutional operations and bilinear upsampling to performance
pixel-to-pixel translation. According to fusion and upsam-
pling level of different intermediate layers, the FCNsmethods
have three variants: FCN32s, FCN16s, and FCN8s.

(2) U-Net. The U-Net method is proposed by Ronneberger et
al. at 2015. This method adopts multiple skip connections
between upper and downer layers.

(3) FPN. The FPN method is published on CVPR2017. Similar to
U-Net, this method adopts multiple skip connections. Be-
sides, the FPN model generates multi-scale predictions for
final output.

(4) SegNet. The SegNet method is proposed by Badrinarayanan
et al. at 2017. As compared with FCNs, SegNet adopts un-
pooling which utilizes pooling index of corresponding max-
pooling operation to perform upsampling.

(5) ResUNet. The ResUNet method adopts the basic structure
of U-Net and replaces the convolutional block of VGG-16
[19] with Residual block [20]. This architecture enhances the
representation ability of the model and gains better model
performance.
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(6) MC-FCN. The MC-FCN method is proposed by Wu et al. at
2018. The MC-FCN adopts the U-Net as backend and intro-
duces multi-constraints of corresponding outputs.

(7) BR-Net. The BR-Net method is published by Remote Sensing
at 2018. Themethod utilizes amodifiedU-Net, which replaces
traditional ReLU with LeakyReLU(with α = 0.1), as shared
backend. Besides, extra boundary loss is proposed to regulate
the model.

Because of the effectiveness of batch normalization(BN) [21],
advanced models, including FPN, SegNet, ResUNet, MC-FCN, and
BR-Net, heavily adopt BN layers after each convolutional operations
to increase training speed and prevent bias.

4 RESULTS AND DISCUSSION
Three FCN variants (FCN8s, FCN18s, and FCN32s), SegNet, U-Net,
FPN, ResUNet, MC-FCN, and BR-Net model are adopted as baseline
models for comparisons. These models are trained and evaluated
utilizing the same dataset and processing platform.

4.1 Qualitative Result
Figure 2 presents eight groups of randomly selected visualization
results generated by BR-Net. From top to bottom rows, there are
original images, extracted edges by Canny, building segmentation
and outline extraction from BR-Net model. In general, the extracted
outlines through Canny detector contains pretty much noise (see
2nd Row). The BR-Net can segment the major part of buildings
from most of the selected RGB images (see 3rd Row). Building
outlines extracted from segmentation results show much fewer
false negatives (see 2nd Row vs. 4th Row).

Image

Canny

Segmentation

Outline

a                   b                     c               d                  e                  f                    g                    h

Figure 2: Randomly selected eight samples of visualization
result. The green, red, blue, and white channels in the re-
sults represent true positive, false positive, false negative,
and true negative predictions, respectively.

4.2 Quantitative Result
For model evaluations, two imbalanced metrics of precision and
recall, and four general metrics of overall accuracy, F1 score, Jaccard
index, and kappa coefficient are utilized for quantitative evaluations.
Figure 3 presents comparative results between FCN8s, FCN16s,
FCN32s, U-Net, FPN, ResUNet, MC-FCN and BR-Net for the testing
samples.

For the imbalanced metrics of precision and recall, the BR-Net
method achieves the highest value of precision (0.743) which indi-
cates that the method performs well in terms of suppressing false
positives. And, the MC-FCN method gains the highest value of
recall (0.824) among nine implemented methods.

For the four general metrics, the BR-Net model achieves the
highest values for overall accuracy, F1 score, Jaccard index, and
kappa coefficient. Compared with the weakest model (FCN32s), the
best model (BR-Net) achieves improvement of approximately 7.2%
(0.949 vs. 0.885) on overall accuracy. For F1 score, the best model
achieves improvement of about 17.8% (0.766 vs. 0.650) over FCN32s.
Compared to the FCN32s method, the BR-Net method achieves
improvements of 29.4% (0.686 vs. 0.530) and 25.8% (0.737 vs. 0.586)
for Jaccard index and kappa coefficient, respectively. Considering
the fact that all these models are proposed within three years, we
can imagine the evolution speed within the research field.
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1 Overall 
accuracy
Precision

Recall

F1-score

Jaccard 
index
Kappa

Method Overall 
accuracy Precision Recall F1-score Jaccard

index Kappa

FCN32s 0.885 0.575 0.796 0.65 0.53 0.586

FCN16s 0.937 0.706 0.791 0.734 0.638 0.697

FCN8s 0.919 0.659 0.786 0.703 0.597 0.657

UNet 0.928 0.687 0.806 0.726 0.633 0.687

FPN 0.946 0.738 0.805 0.759 0.676 0.728

SegNet 0.928 0.682 0.807 0.725 0.629 0.684

ResUNet 0.945 0.730 0.820 0.760 0.678 0.730

MC-FCN 0.945 0.733 0.826 0.764 0.686 0.734

BR-Net 0.949 0.743 0.814 0.766 0.686 0.737

a.

b.

Figure 3: Comparison of segmentation performances of im-
plemented models across the entire testing data. (a) Bar
chart for performance comparison. The x- and y-axis rep-
resent the implementedmethods and corresponding perfor-
mances, respectively. (b) Table of performance comparisons
of methods. For each evaluation metric, the highest values
are highlighted in bold.

4.3 Computational efficiency
The nine models are all implemented in PyTorch and tested on a
64-bit Ubuntu system equipped with an NVIDIA GeForce GTX 1070
GPU 6. During iterations, the Adam optimizer [22] with a learning
rate of 2e-4 and betas of (0.9, 0.999) is utilized. To ensure a fair
comparison of the different methods, the batch size and iteration
number for training are fixed as 24 and 5,000, respectively.

The computational efficiencies of the different methods during
different stages are listed in Figure 4. During the training stage, the
6https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070-ti/
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slowest models (FCN8s and FCN16s) process approximately 29.2
FPS, while the fastest model (U-Net) reaches 91.3 FPS. Because of
fewer computational operations, at the testing stage, the slowest
model(FCN32) and the fastest model (U-Net) reach 131.6 and 280.4
FPS, respectively.

Even with slight differences in their architectures, three FCNs
variants (FCN32s, FCN16s, and FCN8s) show almost identical com-
putational efficiency at both training and testing stages. Consider
the huge differences in their performances (see details in Figure 3
b), it is better to avoid applying FCN32s model.

Compared with U-Net, more complex models such as FPN, Re-
sUNet, MC-FCNthe and BR-Net adopt extra computation layers
that lead to a slightly slower processing speed at both training and
testing stages. The SegNet model, which is slower and weaker than
U-Net, is also not a good option for robust building segmentation
and outline extraction.

a.

b.

Stage FCN32s FCN16s FCN8s U-Net FPN SegNet ResUNet MC-FCN BR-Net

Training
(FPS) 29.4 29.2 29.2 91.3 70.1 53.6 61.0 81.8 78.6

Testing
(FPS) 131.6 131.4 131.2 280.4 247.0 169.4 195.3 252.0 249.8

0.0
50.0
100.0
150.0
200.0
250.0
300.0

FP
S

Training

Testing

Figure 4: Comparison of computational efficiency of the
nine implemented methods.(a) Bar chart for computational
efficiency comparison. The x- and y-axis represent the im-
plemented methods and corresponding processing speed of
frames per second (FPS), respectively. (b) Table of perfor-
mance comparisons of methods. For each stage, the highest
values are highlighted in bold.

5 CONCLUSION
In this paper, we introduce a computer vision package termed
Geoseg that focus on accurate building segmentation and outline
extraction. The Geoseg is built on top of PyTorch, a dynamic deep
learning framework. In Geoseg, we implement nine models as well
as utilities for handling dataset, logging, training, evaluating and
visualization. Through a large-scale aerial image dataset, we eval-
uate performances and computational efficiency of implemented
models including FCN32s, FCN16s, FCN8s, U-Net, FPN, SegNet, Re-
sUNet, MC-FCN, and BR-Net. In comparison to the weakest model
(FCN32s), the best model (BR-Net) achieves increments of 17.8%
(0.766 vs. 0.650), 29.4% (0.686 vs. 0.530), and 25.8% (0.737 vs. 0.586)
in F1-score, Jaccard index, and kappa coefficient, respectively. In

future studies, we will further optimize our network architecture
to achieve better performance with less computational cost.
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