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ABSTRACT

Training deep neural networks requires well-annotated
datasets. However, real world datasets are often noisy, es-
pecially in a multi-label scenario, i.e. where each data point
can be attributed to more than one class. To this end, we
propose a regularization method to learn multi-label classifi-
cation networks from noisy data. This regularization is based
on the assumption that semantically close classes are more
likely to appear together in a given image. Hereby, we encode
label correlations with prior knowledge and regularize noisy
network predictions using label correlations. To evaluate its
effectiveness, we perform experiments on a mutli-label aerial
image dataset contaminated with controlled levels of label
noise. Results indicate that networks trained using the pro-
posed method outperform those directly learned from noisy
labels and that the benefits increase proportionally to the
amount of noise present.

Index Terms— noisy labels, regularization, label corre-
lations, multi-label classification, deep neural networks

1. INTRODUCTION

Recently, deep neural networks have obtained tremendous
achievements in a variety of remote sensing tasks, such as
land cover classification [1] and mapping [2, 3]. One of the
key reasons for these successes is the increasing volume of
available remote sensing datasets. However, considering the
complexity and ambiguity of remote sensing image contents,
it is not easy to annotate every image or pixel accurately.
Besides, some data producers resort to crowdsourcing data or
web search engines for the purpose of reducing the cost of
annotation, which introduces label noise as well. As a conse-
quence, the predictive performance of deep neural networks
directly trained on such noisy labels might be limited. The
problem is exacerbated when allowing more than one label
per data point, i.e. multi-label scenarios.

Some methods have been proposed in the past few
years to address the problem of learning with noisy labels.
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Fig. 1: Illustration of the label correlation regularization. To
regularize predictions of a classifier learned from noisy data
(left image), we map each label into the word embedding
space, where representations/vectors of correlated labels are
adjacent to each other. By measuring distances among these
vectors, irrelevant labels (e.g., ”sand”) can be discarded using
their word distances from the others being predicted.

Damodaran et al. [4] propose to improve the network robust-
ness to noisy labels with adversarial virtual examples sampled
using Wasserstein distances between classes. Sukhbaatar and
Fergus [5] learn a noise transition matrix, which transforms
clean predictions to noisy outputs used to compute the loss.
Hu et al. [6] employ both clean and noisy data to supervise
the learning of a multi-label classification network. However,
most existing works either only focus on single-label classi-
fication [4, 5] or introduce clean training data [6], which is
more often not available in real settings.

In this paper, we propose a new regularization method,
namely label correlation regularization (LCR), to train multi-
label classification models with noisy labels. Specifically,
the proposed LCR aims at regularizing predictions of neural
networks with label correlations extracted from prior knowl-
edge similarly to the effect of a pairwise energy term in a
Conditional Random Field (CRF). An intuitive explanation is
that an unlikely prediction (e.g., sand and ship occur simul-
taneously) should be penalized, while a reasonable prediction
(e.g., pavement and car appear together) get rewarded. How-
ever, the question then arises: "How to define label correla-



tions?” A common solution [7] is to take label co-occurrence
patterns as the label correlation matrix, where frequently co-
occurring labels are considered as highly related. Unfortu-
nately, this approach is data-driven and therefore sensitive to
the inherent label noise of the dataset used. To tackle this lim-
itation, we model label correlations by measuring distances
between prior label representations, e.g., word embeddings of
labels as in [4]. Such a design has the advantage of being in-
dependent of the dataset label noise. Using this label-space
distance, LCR pushes neural networks to make reasonable
predictions according to the class semantics.

2. METHODOLOGY

2.1. Label correlation encoding with word embeddings

To encode label correlations, we use distances between prior
label representations, i.e. word embeddings. A word em-
bedding is a dense numerical representation/vector of a word,
which is learned using NLP models, such as Word2Vec [8]
and Glove [9]. These two models project words in an embed-
ding space where similar concepts are close to each other.

To be more specific, we first use a pre-trained word
embedding model to map each label to a high-dimensional
vector, which is expected to contain label-relevant semantics.
Afterwards, label correlations can be measured by calculating
similarities/distances between corresponding word vectors.
Formally, let L be the number of all candidate labels, i.e.
possible classes, and x; and x; denote word embeddings of
classes 7 and j, respectively. Label correlations (LC) can then
be computed as follows:

where f denotes a similarity measure. In this work, we em-
ploy two measures of similarity: 1) a dot product:
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and 2) the Euclidean distance:
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Applying Eq. 1 to all label pairs, a label correlation matrix can
be built, where each element indicates the correlation between
two labels. It is noteworthy that we normalize the correlation
matrix between 0 and 1. Therefore, values approaching 1 sug-
gest strong label correlations, while those close to 0 indicate
weak relationships. The label correlation matrix is denoted as
A in the following subsections.

2.2. Label Correlation Regularization (LCR)

Given a set of labeled images {I,,,yn}n=1, .n, the multi-
label classification problem is considered as learning a classi-
fier, e.g., a neural network, which can predict multiple labels

Y, of input images I,, with values O (absence of a class) and
1 (presence of a class). Here, y,, and y,, are multi-hot vec-
tors of L dimensions corresponding to the original noisy and
predicted multiple labels of the n-th image I,,, respectively.
N represents the number of images. The learning problem
is then defined as minimizing an empirical risk, e.g., binary
Cross-entropy:

N
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Unfortunately, learning directly with the original noisy y,,
leads to overfitting the label noise. To address this problem,
we propose a regularization term Ly ¢ g enforcing label cor-
relations:

N
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where g, ; indicates the j-th element of ¥,, and P denotes
the collection of positive predictions. N, represents the num-
ber of positive predictions. With this regularization, a model
is enforced to close gaps between predictions and label cor-
relations. Specifically, for a label predicted as positive iy, its
highly related labels are favored, while uncommon labels co-
occurrence is penalized. compute Eq. (5) in matrix form to
make it more efficient:

1. A prediction g,, (size L x 1) is first binarized with a
threshold of 0.5, and then replicated along the second
axis to form a L x L mask, Mn. In this mask, elements
at the i,,-th row are 1, while the others are 0.

2. The element-wise multiplication of M,, and A is con-
ducted to mask out label correlations with respect to
negative predictions. That is to say, entries at rows with
indexes belonging to =P are all 0.

3. The matrix multiplication of 4, and its transpose ¢ is
performed. It is noteworthy that the i,-th row of Y, is
a replica of §L, while the other rows are composed of
only zeros.

4. The distance between the masked A and Yn is calcu-
lated, and L1 ¢ R is then obtained by averaging it.

Accordingly, Eq. (5) can be rewritten as:

N
1 N N
Lror = Y _D(Yo, M, A), 6)

n=1

where D denotes the distance metric. Here we compute the
distance by averaging the Euclidean distance between each
row in Yn and MnA.

The final loss is given by:

L=Lpcr+alrcr, @)
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Fig. 2: The proposed regularization of predictions with label correlations encoded using word embeddings.

where « is a tradeoff parameter representing the strength of
the prior L ¢ r. Figure 2 shows the workflow of the proposed
LCR.

3. EXPERIMENTS AND DISCUSSION

To evaluate the performance of our proposed LCR, we exper-
iment using ResNet-152 [10] as the backbone and the UCM
multi-label dataset presented below.

3.1. Data description

UCM multi-label dataset [11] is a multi-label extension of
the UCM dataset [12]: it is composed of 2100 aerial images
cropped from aerial ortho imagery provided by the United
States Geological Survey (USGS) National Map. The size
of each image is 256 x 256 pixels, and the spatial resolution
is 30 cm. Thanks to authors in [11], all images are reassigned
with one or more labels according to primitive objects, and
there are 17 newly defined object labels in total. We use 80%
of the data for training.

Since we expect to assess the effectiveness of LCR on
noisy labels, we simulate label noise in the training data.
Specifically, we artificially corrupt up to 60% of the train-
ing samples with symmetric label noise. Considering the
complexity of multiple labels, we inject noise to each label
independently by flipping each element of y,, with a uni-
form probability of r, so called noise ratio. After flipping the
labels, we learn the network with only 90% of these noisy
training data and use the remaining noisy training samples to
validate the network performance during the training phase,
i.e. we do not use clean labels for model optimization.
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Fig. 3: Visualization of label correlation matrices measured
with (a) Eq. (2) and (b) Eq. (3). White/black indicates 0/1.

3.2. Implementation details of LCR

To leverage word embeddings more efficiently, we adjust
text descriptions of each label according to the following two
rules. On one hand, countable nouns are changed from sin-
gular form to plural form, as objects often occur in the form
of groups in an aerial image, such as trees and buildings. On
the other hand, some labels are replaced with words, which
are more in line with practical semantics in the dataset. For
examples, water is modified as rivers. Afterwards, we
adopt the 300-dim GloVe [9] pre-trained on the Wikipedia
2014 and Gigaword 5 dataset to map each label into the em-
bedding space. Label correlation matrices built on Eq. (2)
and (3) are visualized in Fig. 3.

3.3. Training details

We use a plain ResNet-152 network as a baseline, which is
modified in a similar way as to the architecture of the multi-
label classification network: On one hand, the number of units
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Table 1: Numerical Results on UCM Multi-label Dataset (%)

T 00 01 02 03 04 05 06

80.03 68.41 61.79 47.25 39.15 26.74 22.69
LCRT 76.17 71.49 66.88 57.00 41.35 32.32 30.76
LCRY 7498 70.56 65.29 53.79 40.60 33.61 33.61

plain

plain represents training with only binary cross-entropy.
LCR' and LCR? represent learning using both binary
cross-entropy and LCR with A yielded from Eq. (2) and
Eq. (3), respectively.

in the last fully-connected layer is reduced to L, e.g., 17 in
our case. On the other hand, the last softmax layer is replaced
with a sigmoid layer. In the training phase, we initialize layers
before the last fully-connected layer with those in ResNet-
152 pre-trained on ImageNet. The network loss is defined
as L, where o is set as 1. We select Adam with Nesterov
momentum [13] as the optimizer, and its parameters are set
as recommended [13]. The learning rate is initialized with
the default value of 2e — 03 and decreased by a factor of 10,
when the validation loss no longer decreases.

We implemented our model on TensorFlow-1.12.0 and
trained for 100 epochs. The computational resource is an
NVIDIA Tesla P100 GPU with a 16GB memory. The size
of training batches is set as 32.

3.4. Discussion of the result

To compare the performance of networks learned with noisy
data, we calculate the mean example-based F score [14] as
the evaluation metric and report numerical results in Table 1.
We can see that the classification performance of ResNet-
152 directly learned from noisy data (row: ’plain”) decreases
drastically with an increasing noise ratio. Although perfor-
mance decrease can be observed in the networks trained with
LCR, their performances are more robust. Already at 10% of
noise injected, LCR surpasses the original model and con-
stantly outperforms it for increasing noise levels. Table 2
gives several examples with r = 0.6. As show in the first ex-
ample, ResNet-152 with LCR regularization can make more
correct predictions and fewer erroneous decisions compared
to directly training on noisy labels. The last example shows
a situation where both networks correctly predict four labels,
while the later network makes fewer mistakes thanks to LCR
regularization.

4. CONCLUSION AND OUTLOOK

We proposed a regularization method, LCR, to efficiently
train a deep neural network with noisy labels. In addition
to demonstrate the effectiveness of LCR, we also analyzed
the influence of two label correlation measurements. For

Table 2: Prediction with LCR' on the UCM Multi-label
Dataset. Red labels indicate false positives.

image clean label plain LCR'
bare soil, airplane, bare bare soil,
building, soil, building, building, court,
pavement, chaparral, sea, field, mobile
grass, and tree court, dock, home, tank,
sand, field, pavement,

mobile home,

ship, tank, water

sand, ship, tree

bare soil, court, airplane, bare bare soil,
grass, soil, building, chaparral, field,
pavement, tree ship, chaparral, grass, sand,

court, dock, sea,
field, mobile

pavement, ship,

tank, tree

home, sand, car,

tank, tree, water

the future work, exploiting more efficient label correlation
measurement can further benefit our regularization scheme.
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