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ABSTRACT

Identification of road networks and optimal routes directly
from remote sensing is of critical importance to a broad ar-
ray of humanitarian and commercial applications. Yet while
identification of road pixels has been attempted before, esti-
mation of route travel times from overhead imagery remains
a novel problem, particularly for off-nadir overhead imagery.
To this end, we extract road networks with travel time es-
timates from the SpaceNet MVOI dataset. Utilizing the
CRESIv2 framework, we demonstrate the ability to extract
road networks in various observation angles and quantify per-
formance at 27 unique nadir angles with the graph-theoretic
APLSlength and APLStime metrics. A minimal gap of 0.03
between APLSlength and APLStime scores indicates that our
approach yields speed limits and travel times with very high
fidelity. We also explore the utility of incorporating all avail-
able angles during model training, and find a peak score of
APLStime = 0.56. The combined model exhibits greatly
improved robustness over angle-specific models, despite the
very different appearance of road networks at extremely
oblique off-nadir angles versus images captured from directly
overhead.

Index Terms— Off-Nadir Imagery, Road Network Map-
ping, Image Segmentation

1. INTRODUCTION

Using convolutional neural networks to interpret overhead
imagery has applications in disaster response [1, 2], agri-
culture [3], and many other domains [4]. Remote sensing
satellites with high spatial resolution often have to point their
sensors off-nadir to capture areas of interest if they are not
directly overhead. This is particularly common in real-world
use cases when timely collection and analysis is required, ne-
cessitating collection from an oblique (off-nadir) look angle.
This motivates an analysis of how viewing angle affects deep
learning model performance. The effect of viewing angle on
model performance for finding building footprints has been
previously studied [5], but here an analogous study for roads
is undertaken for the first time. The ability to construct a road
network from a satellite image is representative of a broad

class of geospatial deep learning problems, while also be-
ing intrinsically valuable for routing during rapidly-changing
conditions. Key to this capability is going beyond pixel
segmentation to extracting and evaluating a graph-theoretic
representation of a road network.

This paper is organized as follows: Section 2 describes
related work and the dataset used in this study, while Section
3 details our algorithmic approach. Section 4 discusses our
experiments, and Section 5 details the results of these exper-
iments. Finally, in Section 6 we discuss takeaways from this
paper and the relative success of our efforts.

2. RELATED WORK AND DATASET

Extensive computer vision research has focused on natural
scenes, and although there exist natural scene datasets with
multiple views (e.g., [6]) or even 3D models (e.g., [7]), nei-
ther category encompasses a wide range of viewing angles in
a photorealistic way. Likewise, a variety of overhead imagery
datasets are available, but generally with each area of interest
seen from only one or a limited range of views (e.g., [8]). To
evaluate algorithmic ability to extract routable road networks
from satellite imagery we turned to the SpaceNet Multi-View
Overhead Imagery (MVOI) dataset [5]. To our knowledge,
SpaceNet MVOI is the only open access high-resolution satel-
lite imagery dataset with a wide range of viewing angles of the
same geographic area and time.

SpaceNet MVOI comprises 27 distinct collects acquired
in a 5 minute time span during a single pass of the Maxar
WorldView-2 satellite over Atlanta. These looks range from
7◦ to 53◦ off-nadir, including images both before and after the
satellite passed over Atlanta (i.e. target azimuth angle 17.7◦

to 182.8◦), all covering the same 665 km2 of geographic area.
As look angle increases from 7◦ to 53◦ and images cover pro-
gressively larger ground areas, the pixel size (ground sample
distance, GSD) also increases from 0.5 m to 1.67 m. Along-
side the imagery, MVOI includes manually curated labels for
machine learning: 126,747 building footprint polygons and
≈ 3, 000 km of road network linestrings. The road network
labels contain metadata indicating number of lanes, road type
(residential surface road, major highway, etc.) and surface
type. These attributes dictate estimated safe travel speed; for
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(a) Training Image (b) Multi-channel Mask

Fig. 1: Sample training data. (a) Example Atlanta training
chip. (b) Multi-channel training mask with roads colored by
speed (red = 25 mph, green = 45 mph, blue = 55 mph).

example, a paved one-lane residential road has a speed limit
of 25 mph, while a three-lane paved motorway can be tra-
versed at 65 mph, and a one-lane dirt cart track has a traver-
sal speed of 15 mph [9]. Both building and road network
labels were manually annotated using the most nadir (7◦) col-
lect. The images and labels are tiled into 450m × 450m
(0.2025 km2) chips for machine learning. 80% of the geo-
graphic tiles are included in the training set and 20% are held
back for testing (yielding 231 unique testing scenes at each
angle), with each set comprising all 27 collects at their respec-
tive geographic tiles. For further details regarding the dataset
see [5] or www.spacenet.ai.

3. ALGORITHMIC APPROACH

We utilize the open source City-scale Road Extraction from
Satellite Imagery v2 (CRESIv2) algorithm [9] that served as
the baseline for the recent SpaceNet 5 Challenge focused on
road networks and optimized routing from satellite imagery
[10]. We render road labels into a multi-channel training
mask (Figure 1), and train a deep learning segmentation
model (ResNet34 [11] encoder and a U-Net [12] inspired
decoder) with these masks. At inference time the predicted
masks are refined, smoothed, and transformed into a skele-
ton. A graph structure is built from this skeleton, with nodes
representing intersections and weighted edges representing
roads with safe travel speed estimates. The channels of the
prediction mask provide speed estimates (e.g. channel 2 cor-
responds to 25 mph), which in turn yield travel times for each
roadway. Figure 2 summarizes the algorithmic approach.

Inference runs at 280 km2 / hour using a single Titan X
GPU. Though CRESIv2-generated labels do not achieve the
same fidelity as human labelers, this rate nonetheless rep-
resents a significant acceleration over existing manual tech-
niques. For example, at this speed a 4-GPU cluster could
map the entire 9100 km2 area of Puerto Rico in ≈ 8 hours,
far faster than the > 2 months required to manually re-map
Puerto Rico after Hurricane Maria [13].

Fig. 2: CRESIv2 road extraction algorithm. This
schematic collapses the multiple phases of CRESIv2 into two
bins: image segmentation and refinement (a−→b), and graph
extraction with speed inference (b−→c). The output network
(c) is colored by speed from yellow (25 mph) to red (65 mph).

4. EXPERIMENTS

We begin by training a model solely on the most nadir (7◦)
imagery used for labeling. We then evaluate this model over
all 27 angles in the test dataset (see Section 5 for results).

We also train models by combining all data within a cer-
tain angle range. We use four nadir bins: NADIR (≤ 25◦,
OFF (26 − 39◦), VOFF (≥ 40◦), and ALL. Each model is
trained for 3 days on a single NVIDIA Titan X GPU, which
equates to 15− 65 epochs, depending on bin size.

Scoring is accomplished via the graph-theoretic Aver-
age Path Length Similarity (APLS) metric [14]. This metric
sums the differences in optimal path lengths between nodes
in the ground truth graph G and the proposal graph G’. The
definition of shortest path can be user defined; we focus
on APLStime metric [9] to measure differences in travel
times between ground truth and proposal graphs, but also
consider geographic distance as the measure of path length
(APLSlength).

5. RESULTS

For the 7◦ model, performance at close to nadir angles peaks
at APLStime = 0.57. For comparison, the highest score
posted on a single city by the winner of the SpaceNet 5 chal-
lenge was 0.51 [15]. We observe near equal performance
when weighting edges with length or travel time, with an
APLSlength score only 0.03 higher than APLStime. These
results indicate that road speeds and travel times are extracted
quite precisely, as any error in travel time would compound
existing errors in the road network topology.

Figure 3 displays the inferred speed for a selection of test
chips, with successful differentiation of speed for different
road types. In Figure 4 we show predictions and ground truth
for multiple nadir angles and test chips. Note that the algo-
rithm frequently successfully connects roads even when over-
hanging trees obscure the road. The model also has some lim-
ited success in connecting occluded roads behind buildings.

We plot the results for each model in Figure 5, (e.g. the
‘NADIR’ model is trained on data with angles from 7− 25◦).

www.spacenet.ai


Fig. 3: Speed inference results, ‘ALL’ model. Roads are colored by speed, from yellow (25 mph) to red (65 mph). APLStime

scores are displayed in the bottom left corner of each chip.

Fig. 4: Results at different look angles, ‘ALL’ model. Each
row is the same geographic chip, with each column a unique
observation angle. Ground truth labels are colored in cyan,
with model predictions in orange. APLStime scores are dis-
played in the bottom right of each chip.

The 0.03 difference between APLStime and APLSlength that
we noted for the 7◦ model is mirrored for all other models, so
for clarity we only plot APLStime. In Figure 5 (Top) the x-
axis is the absolute value of the nadir angle; of particular note
is the pronounced sawtooth pattern for all models, which was
also observed for building footprint extraction in [5]. The dips
correspond to south-facing shots looking into the sun where
we hypothesize that shadows complicate road extraction.

The bottom panel of Figure 5 renders south-facing nadir
angles as negative, and illustrates that each model performs

Fig. 5: Results for each model. APLStime scores for at each
nadir angle for each of the five trained models. Top: The
x-axis is the absolute value of the nadir angle (south facing
angles in red). Note the sawtooth pattern caused by these
south facing angles. Bottom: The same information as above,
but with south facing angles plotted as negative; we also plot
the standard error of the mean for the combined model.

well in the angle bin it was trained in. Of particular import
is that the model trained on all bins (i.e. ‘ALL’) equals per-
formance (within errors) of the bin-specific (e.g. ‘VOFF’)



models. Evidently, the ‘ALL’ model incorporating all train-
ing angles is far more robust than bin-specific models, with
(APLStime > 0.5) for nadir angles between -32 and +36 de-
grees. In the very off-nadir bin of 40 degrees or greater we
observe a marked drop in performance, with APLStime ≈ 0.2
at the highest nadir angle of 53◦.

6. CONCLUSIONS

We utilize the heretofore unexplored SpaceNet MVOI road
labels to train models for road network and travel time extrac-
tion at both on- and off-nadir imagery. For a model trained
solely on a single nadir collect (taken at a mere 7◦ off-nadir)
we achieve reasonable APLS scores out to ≈ 25◦ off-nadir,
though at higher nadir angles performance with this model
drops precipitously. We find that incorporating all available
data regardless of inclination angle into one model is far more
robust than bin-specific models trained on a subset of look an-
gles. This global model achieves scores of APLStime > 0.5)
for nadir angles between -32 and +36 degrees, though road
network inference at very high off-nadir angles of ≥ 45◦ is
extremely challenging.

Road network extraction performance at off-nadir angles
has a somewhat different functional form than building ex-
traction at off-nadir. Comparing Figure 5 to [5], we note that
for buildings the bin-specific model outperforms the global
model in the very off-nadir regime; yet for roads we find that
a global model performs well at all angles. For roads, we
observe a 65% drop in performance between nadir and 53◦

off-nadir; contrast this to buildings, where published results
indicate a 91% drop in score between nadir and 53◦ off-nadir.
It appears that inferring occluded roads in high off-nadir shots
is easier than inferring building footprints. This may be due
in part to the greater utility that context plays for roads; since
roads are usually connected, surrounding roadways are able
to inform occluded roads, while surrounding buildings yield
less information about occluded buildings.

Surprisingly, the APLStime and APLSlength scores are
nearly identical across all look angles (∼ 6% average differ-
ence), despite the additional requirement to extract safe travel
speed for estimating APLStime. This suggests that CRESIv2
can estimate safe travel speed nearly perfectly, as any other
result would have further reduced the APLStime score by
compounding existing errors associated with route length.
As our estimate for safe travel speed is defined by road size,
surface type, and context (e.g. residential road vs. major
highway), this implies that CRESIv2 learns road attributes as
well as their layout.

Automated extraction of road speeds and travel times
from off-nadir satellite imagery applies to a great many prob-
lems in the humanitarian and disaster response domains; this
paper has demonstrated that such a task is not only possible,
but available in the open source and far faster than manual
annotation.
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