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ABSTRACT

Building footprint maps are of high importance nowadays
since a wide range of services relies on them to work. How-
ever, activities to keep these maps up-to-date are costly and
time-consuming due to the great deal of human intervention
required. Several automation attempts have been carried out
in the last decade aiming at fully automatizing them. How-
ever, taking into account the complexity of the task and the
current limitations of semantic segmentation deep learning
models, the vast majority of approaches rely on aerial imagery
(< 1 m). As a result, prohibitive costs and high revisit times
prevent the remote sensing community from maintaining
up-to-date building maps. This work proposes a novel deep
learning architecture to accurately extract building footprints
from high resolution satellite imagery (10 m). Accordingly,
super-resolution and semantic segmentation techniques have
been fused to make it possible not only to improve the build-
ing’s boundary definition but also to detect buildings with
sub-pixel width. As a result, fine-grained building maps at
2.5 m are generated using Sentinel-2 imagery, closing the
gap between satellite and aerial semantic segmentation.

Index Terms— Sentinel-2, Remote Sensing, Building
Detection, Deep Learning, Convolutional Neural Networks.

1. INTRODUCTION

In this day and age, the detection of objects in remote sensing
imagery has many immediate applications. In the last decade,
attention has been given to the extraction of building foot-
prints, since they are important inputs for services such as ur-
ban planning or rapid mapping. However, a great level of pre-
cision and regular updates are needed by these applications to
work properly. Traditionally, the extraction of building foot-
prints has been manually performed by remote sensing spe-
cialists occasionally assisted by semi-automatic tools. Tak-
ing into account not only their complexity but also the great
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amount of time required by these tasks, many automation at-
tempts have been carried out [1].

Despite initial automation attempts relying on the usage
of traditional machine learning algorithms, the rise of deep
learning has revolutionized the remote sensing literature [2].
Accordingly, the most promising approaches use deep learn-
ing techniques to automatically detect objects such as build-
ing footprints [3].

The building detection task requires a great level of de-
tail in the produced masks. However, deep learning models
struggle to precisely define building’s edges and corners. Due
to this limitation, researchers have resorted to other ways for
increasing the accuracy of the generated masks. For that pur-
pose, the most straightforward solution is to use very high res-
olution imagery. Consequently, very high resolution imagery
has been traditionally employed to diminish the network’s de-
ficiencies [4].

Therefore, the vast majority of works make use of aerial
imagery (< 1 m) to extract building footprints [5]. Neverthe-
less, it must be taken into account that the cost of these prod-
ucts hinders their application on a daily basis. Conversely,
few works have assessed the usage of high resolution im-
agery (< 10 m) for building detection tasks, although its
greater availability thanks to their lower costs and shorter re-
visit times [6].

In 2014, the European Space Agency (ESA) in partner-
ship with the European Commission created the Copernicus
programme to make remote sensing data more accessible and
affordable in Europe. Since then, all the information pro-
duced in the framework of Copernicus has been made avail-
able free-of-charge to the public. Among the seven missions
currently being developed under the Copernicus programme,
we have focused on the multi-spectral sensor Sentinel-2 (S2).
S2 produces high resolution optical images composed of thir-
teen bands. In this work, we focus on those bands given at the
greatest resolution of 10 m.

Our hypothesis is that using high resolution imagery
(10 m) it is possible to extract building footprints precisely.
For this purpose, we propose a novel deep learning architec-
ture that fuses super-resolution and semantic segmentation
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techniques. Accordingly, this work opens up new possibili-
ties for a wide range of applications, since costs and revisit
time are drastically reduced.

The proposed deep learning architecture is based on the
U-Net [7] architecture and produces enhanced segmentation
masks that quadruple the resolution at the input (2.5 m). In
the experimental study, our approach is compared to the stan-
dard U-Net that does not alter the output resolution (10 m).
Moreover, aiming at assessing the generalization ability of the
different approaches against color spectrum variations caused
by seasonal rhythms, the study is extended to multiple time-
steps thanks to the availability offered by S2. Accordingly,
the dataset is composed of 14 cities spread across the Spanish
territory. For each city, two trimesters have been considered
(2018/12 - 2019/03 and 2019/03 - 2019/06). Moreover, ac-
cording to the machine learning guidelines [8], the dataset has
been divided into training and test sub-sets. The performance
of the different architectures has been evaluated using the F-
score and the Intersection over Union (IoU) metrics. As a
result, experiments show that building footprints can be accu-
rately extracted from high resolution satellite imagery using
the proposed deep learning model.

The remainder of this article is organized as follows. The
methodology is detailed in Section 2. Thereafter, the experi-
mental framework, experiments, and results are presented and
discussed in Section 3. Finally, Section 4 concludes this work
and present some future research.

2. METHODOLOGY

2.1. Dataset

The vast majority of open datasets that are focused on build-
ing footprint extraction consist of hand-labeled aerial imagery
[9]. Therefore, we have opted for creating our own dataset
combining S2 imagery with OpenStreetMap (OSM) [10]
building labels. It must be noted that OSM building poly-
gons have been rasterized to 2.5 m since the architecture
used produces enhanced segmentation masks that quadruple
the resolution given at the input (10 m). Although OSM
may contain labeling errors, mostly in rural areas, previous
works [11] have demonstrated that it is possible to reach
a good performance when using large datasets. Accord-
ingly, 14 cities spread across the Spanish territory have been
selected and divided into two sets following the machine
learning guidelines [8]. Additionally, since the usage of S2
allows us to study the generalization capabilities of the mod-
els with respect to different time-steps in the same location,
two trimesters (2018/12 - 2019/03 and 2019/03 - 2019/06)
have been considered for each city in the dataset. It must
be noted that, although in this work we make use of two
trimesters, this methodology can be extrapolated to any num-
ber of trimesters, even with shorter time intervals (e.g. weeks
instead of trimesters). As it is shown in Table 1, each city is

assigned to a single set to prevent data leakage.

City Dimensions #buildings  Set

A coruna 704 x 576 8554  Train
Albacete 1280 x 1152 5793 Train
Alicante 1216 x 1472 19894  Train
Barcelona N. 1152 x 1728 63783 Test
San Sebastidn 512 x 768 5363 Test
Granada 1664 x 1600 10911 Test
Logrofio 768 x 960 1996  Train
Madrid N. 1920 x 2688 102750  Train
Murcia 1792 x 1600 7528 Train
Oviedo 960 x 896 11876  Train
Pamplona 1600 x 1536 9489  Test
Santander 1152 x 1216 14148 Train
Valencia 2304 x 1728 30821 Train
Zaragoza 2304 x 2752 10662  Train

Table 1. Summary of the dataset.

2.2. Model

The architecture proposed in this work, as it can be seen in
Figure 1, is based on the U-Net model [7].

ResNet-34 Encoder

M Conv [ Up-Sample M Residual Block — Concatenate

Fig. 1. Proposed U-Net-based architecture.

Two main modifications have been performed to the orig-
inal U-Net architecture:

1. To include an up-scaling layer prior to the feature ex-
tractor in order to take advantage of the U-Net’s skip
connections and thus, prevent the loss of pattern in-
formation. Although in this work we have opted for
the classical nearest-neighbor interpolation algorithm
to up-scale the input, other algorithms may be consid-
ered.

2. To replace the original U-Net’s encoder with a ResNet-
34 [12], given the capacity residuals models have to ex-
ploit the available information whilst reducing the com-
putational cost.

3. EXPERIMENTAL STUDY

3.1. Experimental framework

The architectures proposed in this paper have been imple-
mented using the Keras deep learning framework. A combi-
nation of the Dice and Focal losses has been chosen as the loss



function, minimized using the Adam optimizer with a fixed
learning rate of le-3. Models have been trained for 100K it-
erations, randomly taking batches of 14, 128 x 128 samples.

3.2. Experiments and discussion

Two experiments have been carried out to answer the follow-
ing questions:

1. Can high resolution satellite imagery limitations for
building footprint detection be overcome by increasing
the output resolution?

2. How do the models generalize to varying conditions
in different time steps? Can the generalization ability
of the models against color spectrum variations be in-
creased using a dataset with multiple time-steps?

Tables 2 and 3 presents the results obtained for experi-
ments 1 and 2, respectively, in terms of relaxed F-score and
IoU. Metrics have been individually computed for each city
in the test set. Additionally, the overall performance has been
computed. It must be noted that the best results for each row
and trimester are presented in boldface.

3.2.1. Experiment 1: Increasing the output resolution

In this experiment, we compare the original U-Net archi-
tecture that preserves the resolution and our approach that
quadruples it. That is, when using S2 imagery (10 m), the
U-Net gives a 10 m resolution segmentation mask, while 2.5
m masks are provided by the model proposed in this work.
It must be noted that in this experiment we have only made
use of the first trimester (2018/12 - 2019/03) for both training
and testing.

Table 2 quantitatively reports that increasing the res-
olution at the output results in more accurate segmentation
masks. There is a noticeable increase in both average IoU and
F-score metrics when generating masks with more resolution
than the one given at the input.

U-Net x1 U-Net + Nearest x4
City IoU F-score IoU F-score
Barcelona N. 0.5878 0.7404 0.5474 0.7075
San Sebastian 0.6207 0.7660 0.7343 0.8468
Granada 0.6522 0.7895 0.8119 0.8962
Pamplona 0.5775 0.7322 0.7490 0.8565
Overall 0.6095 0.7570 0.7106 0.8267

Table 2. Comparison between the original U-Net architecture
and the one proposed in this work that quadruples the resolu-
tion at the output.

3.2.2. Experiment 2: Adding multiple time-steps

Here the generalization capability of the model against color
spectrum variations mainly caused by adverse atmospheric
phenomena and seasonal rhythms is evaluated. In this exper-
iment, we compare the U-Net + Nearest x4 model trained on
the first trimester (2018/12 - 2019/03) with the same model
trained on the two trimesters (2018/12 - 2019/03 and 2019/03
- 2019/06).

Results presented in Table 3 show significant differences
between both models. That is, when training using only the
first trimester, the model (U-Net + Nearest x4) does not gen-
eralize well to unseen trimesters.However, when the dataset
is augmented using multiple time-steps also for training, the
model (U-Net + Nearest x4 + MT) learns how to overcome
color variations, outperforming the previous approach. More-
over, as it can be observed, the results obtained are consistent
not only across all the cities within the test set but also are
much more stable over time.

U-Net + Nearest x4 U-Net + Nearest x4 + MT

2018/12 2019/03 2018/12 2019/03

City IoU F-score IoU F-score IoU F-score IoU F-score

Barcelona N. 0.5474 0.7075 0.7901 0.8821 0.6814 0.8105 0.7678 0.8686
San Sebastidn 0.7343 0.8468 0.5992 0.7494 0.7374 0.8488 0.6467 0.7854

Granada 0.8119 0.8962 0.7241 0.8400 0.7945 0.8855 0.7846 0.8793
Pamplona  0.7490 0.8565 0.5245 0.6881 0.7172 0.8353 0.6711 0.8032
Overall 0.7106 0.8267 0.6594 0.7899 0.7326 0.8450 0.7175 0.8341
Table 3. Comparison between training using a single

trimester and using multiple trimesters.

Figure 2 qualitatively reports the performance of the dif-
ferent architectures tested in this paper, showing several sam-
ples randomly taken from the test set. Thoroughly examining
the figure, conclusions extracted from Tables 2 and 3 are re-
inforced. As it can be observed, the original U-Net model
struggles to detect small elements, often resulting in coarse
segmentation masks. For this reason, when the output resolu-
tion is increased, semantic segmentation models cannot only
detect objects with sub-pixel width but also precisely define
building edges. It must be noted that the benefit of including
multiple time-steps (trimesters) is also reflected in the figure.
Moreover, the hyper-temporal component makes it possible
for the model to deal with complex scenarios and significant
color spectrum variations.

4. CONCLUSIONS AND FUTURE WORK

This paper proposes a new deep learning-based architecture
to extract building footprints from high resolution satellite
(10 m) imagery. As it has been quantitatively and quali-
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Fig. 2. Visual comparison between the original U-Net architecture trained using only the first trimester, and the proposed
modification with nearest-neighbor input up-scaling trained using both single multi-temporal data.

tatively proved, the proposed model is capable of detecting
buildings even if their width reaches sub-pixel size.

However, there is a great deal of research lines that should
be addressed in the near future. More areas of interest should
be included to make both models and evaluation more ro-
bust and fairer. Additionally, it would be interesting to com-
pare the proposed architecture with other state-of-the-art ap-
proaches.
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