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ABSTRACT

Due to climate and land-use change, natural disasters such
as flooding have been increasing in recent years. Timely and
reliable flood detection and mapping can help emergency re-
sponse and disaster management. In this work, we propose a
flood detection network using bi-temporal SAR acquisitions.
The proposed segmentation network has an encoder-decoder
architecture with two Siamese encoders for pre and post-
flood images. The network’s feature maps are fused and
enhanced using attention blocks to achieve more accurate
detection of the flooded areas. Our proposed network is
evaluated on publicly available Sen1Flood11 [1] benchmark
dataset. The network outperformed the existing state-of-the-
art (uni-temporal) flood detection method by 6% IOU. The
experiments highlight that the combination of bi-temporal
SAR data with an effective network architecture achieves
more accurate flood detection than uni-temporal methods.

Index Terms— Flood Detection, bi-temporal, Change
Detection, SAR, Siamese, Deep Learning, Encoder-Decoder,
Attention.

1. INTRODUCTION

Natural disasters cost billions of dollars worth of economy
every year, and floods are responsible for a major part of that.
Because of floods, millions of people abandon their property,
moreover poor and middle-class people are most affected by
floods. The loss of lives and property due to natural disas-
ters brings people towards poverty and it takes them decades
to recover. With climate change, the developed countries are
also at high risk. Prediction of floods and evacuation before
the event is not quick enough and still improving. In such a
scenario, accurate and reliable flood mapping after the disas-
ter can help in rescue missions, re-routing traffic, delivering
aids, and many more.

Satellites are a leading technology in gathering quick in-
formation on a large scale. Compared to optical data, Syn-
thetic Aperture Radar (SAR) imagery is preferred for flood
mapping from space. Unlike optical sensors, SAR has the ca-
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pability of imaging day and night, irrespective of the weather
conditions.

SAR data acquired from various satellites has been ex-
plored for water detection and flood mapping. Historically,
Flood mapping on SAR data is performed using manual
thresholding, fuzzy logic, difference images, filtering, log-
ratio, and others [2, 3]. More recently, multiple studies
investigated the potential of Deep Learning algorithms for
the flood detection task, mainly using uni-temporal data. For
example, in [4] work, authors experimented on support vector
machine and basic neural networks. In paper [5] and [6],
different flood events are considered and water segmentation
is conducted on uni-temporal data using U-Net architec-
ture. Moreover, previous works investigated DL networks
on smaller sites, hence lacking training data and generaliza-
tion. In 2020, a large-scale flood dataset Sen1Flood11 [1]
was launched as a free and open benchmark dataset helping
researcher in experimenting DL methods in flood detec-
tion tasks. This dataset has been explored in some studies
[7, 8] and [9]. In study [7], authors experimented on optical
Sentinel-2 data for the domain adaptation and flood segmen-
tation task. In [8] and [9], SAR and optical data are fused to
segment flood areas on uni-temporal data.

In this work, flood detection is performed as a change de-
tection task on bi-temporal data. For the experiments, we used
the post-flood SAR images from Sen1Flood11 [1] and pre-
flood images are collected separately. In Fig. 1, an example
of the input pre and post images and the reference label map
are illustrated.

2. PROPOSED METHOD

2.1. Data Preparation

The Sen1Flood11 [1] dataset is used for training and evalua-
tion of the model. The dataset consists of 446 non-overlapped
Sentinel-1 tiles. The samples are from 11 different flood
events. Each sample is a patch of 512x512 pixels with 10-
meter ground resolution. A wide variety of geographical
areas are covered in the data, making it a good dataset for
investigating the model’s generalization capability. Each
sample is composed of two bands VV(vertical transmit, ver-
tical receive) and VH(vertical transmit, horizontal receive).
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Fig. 1: Data Samples. From left to right, pre-flood, post-flood images and Ground truth labels are visualized. In the ground truth blue color
indicates water and the background is in white.

The dataset is also associated with Pixel-wise classification
ground truth. Each pixel is classified into three categories,
0, 1, and -1. Class 0 represents the absence of water, class 1
represents water, and -1 indicates missing data.

The flood event samples in the Sen1Flood11 dataset are
post-flood images. We strengthen the dataset by adding pre-
flood images considering the Sentinel-1 images acquired with
the same SAR geometry. We fetched the geometry and the or-
bit of the post-flood images, and downloaded all the available
Sentinel-1 images over a span of 1 year before the flood event
date. These Sentinel-1 images are downloaded using Google
Earth Engine’s python API [10]. The pixel-wise median of
all the past year images is considered as the pre-flood image.

The dataset is divided into training and validation sets
as specified in the Sen1Flood11 dataset. The VV and VH
backscatters of both pre and post-flood images are clipped in
range (-23, 0)dB and (-28, -5)dB respectively. At last, all the
images are normalized before feeding to the network. Few
samples of pre-flood, post-flood images, and the correspond-
ing flood mask are visualized in Figure1.

2.2. Network

In this work, we propose a dual-stream Siamese network for
flood detection. The network is shown in Figure2. The archi-
tecture of the proposed network is inspired by the encoder-
decoder segmentation networks. In such architectures, the en-
coder encodes the salient features of the input into a smaller
representation named feature maps. These maps are then up-
sampled and decoded into a segmentation map in multiple

steps. The size(width x height) of the segmentation map is
equal to the size of the network’s input.

In the presented network, two encoders are used to en-
code pre-flood and post-flood images. The encoders used are
inspired by siamese networks hence, share weights. The net-
work takes 3 channel input, the first 2 channels are VV and
VH SAR backscatter. The third channel is kept blank(all ze-
ros). Since, We are using pre-trained 3 channel backbone, We
are bound to use 3 channel input.

At different levels of the encoder, there are multiple-scale
feature maps. At each scale, different level of semantic infor-
mation is captured. From the two encoders, four feature maps
of different scales are extracted. The size of the extracted fea-
ture maps are (256x256), (128x128), (64x64), and (32x32).

Since the dataset is acquired in regions with different ter-
rain morphologies and land covers, the VV and VH backscat-
ter behavior is not uniform. Depending on the surface, the
significance of VV and VH channel varies. This phenomenon
is taken into account by adding a channel-wise attention block
to the network. The attention block is also complemented
with the spatial attention and to achieve this we used Con-
current Spatial and Channel ‘Squeeze & Excitation’(scSE)
blocks [11].

The feature maps from the two encoders are now en-
hanced and weighted channel-wise. These features from the
pre-flood and post-flood images are fused using concatenation
operation. The feature maps are then fed into the decoder,
where the output flood map is generated after applying, a se-
ries of convolution, upsampling, padding and normalization
operations.



Fig. 2: Attentive Dual Stream Siamese Network.

2.3. Implementation and Training

The pixel-wise change detection is handled as a binary clas-
sification task with two classes ”change” and ”no change”.
These two classes can be interpreted as flood and no flood.
The problem of severe imbalance between changed and un-
changed pixels is well known in the remote sensing field. To
overcome this problem we used a combination of focal loss
and dice loss to train the network. The loss combination used
in the network is shown in equation(1).

Loss = α ∗DiceLoss+ (1− α) ∗ FocalLoss (1)

For better convergence of the model, the learning rate is de-
cayed in steps. The initial learning rate is 0.001 and de-
cayed until it is at 0.00001. The decay steps are controlled
with the ”reduce on plateau” method, which decays the rate
when the learning curve is stuck at a plateau. We conducted
the experiments with multiple backbones and the best results
are recorded with Resnet50 encoder. In the learning process,
’GeoTIFF’ images of size 512x512 pixels are used. With the
help of augmentation, the data size and add geometric ro-
bustness to the model is increased. The augmentation meth-
ods used are horizontal and vertical flip. All the experiments
are implemented in Keras and the network is trained on one
google colab GPU. The network’s training time is 2hours and
inference time is 5 images per second. The Code will be made
publicly available.

3. RESULTS AND EVALUATION

For the quantitative evaluation of the proposed method, we
used intersection over union(IOU) and F1-Score metrics.
To the best of our knowledge, there are no works on this
Sen1Flood11 or any available large-scale SAR dataset, which

explore deep learning methods on multi-temporal data for
flood detection. There are two existing works conducted
using uni-temporal post-flood data from the Sen1Flood11
dataset. Our results are compared with these methods re-
ferred here as ’DL Method 1’ and ’DL Method 2’. Both of
these methods work on post-flood data and the detection is
performed as a segmentation task. The quantitative perfor-
mance comparison is shown in Table 1.

Methods IOU F1-Score
Uni-Temporal DL Method 1[9] 0.64 –
Uni-Temporal DL Method 2 S1[8] – 0.62
Bi-temporal Flood Detection(ours) 0.70 0.83

Table 1: Performance comparison with existing methods.

From the comparison, we can see that our proposed
method on multi-temporal SAR data outperformed the pre-
vious benchmark methods. The proposed method achieved
6% better IOU in comparison to the ’DL Method 1’ and
21% better F1-score compared with ’DL Method 2’. A few
samples of the flood detection results are visualized in Fig-
ure 3 for qualitative analysis. The results prove that when
the detection is done as a comparison between pre-flood and
post-flood acquisitions, additional information is learned by
the neural network improving the overall accuracy. This ad-
ditional information contributes towards more accurate flood
area detection.

4. CONCLUSION

In this work, we propose a dual-stream model to utilize
pre-flood images along with post-flood images to detect the
flood areas as a change detection task. From the evaluations,



Fig. 3: Detection Result Samples. Three sample results are visualized in 3 rows. From left to right: pre-flood, post flood images, Ground
truth labels and proposed network’s prediction are visualized.

we found that with the help of pre-flood images, flood ar-
eas can be detected more accurately. Also, the Sentinel-1
data is freely available to download, hence utilizing before-
event data adds no cost to the task and improves the flood
detection results.In the next step, we will be extending our
work to semi-supervised and unsupervised multi-temporal
methods as labeled data are often not readily available and
time-consuming to generate. We will aim to understand bet-
ter the pros and cons in comparison to supervised methods.
The over-reaching goal of our ongoing research is to provide
robust and automatic methods for flood emergency mapping.
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