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ABSTRACT 

 
Unmanned Aircraft Systems (UAS) are being used more 

often in agriculture to provide estimations of important 

metrics such as biomass because of the potential for improved 

temporal and spatial resolutions. More recently LiDAR 

sensor technology has advanced enabling more compact sizes 

that can be integrated with UAS platforms. Being an active 

sensor, LiDAR signals are capable of penetrating through the 

vegetation canopy providing more information on plant 

structure. Commonly, LiDAR data is used to derive only 

height information. However, newer studies have shown the 

retrieval of additional information from the spatial 

distribution and intensity of LiDAR signals. This study takes 

a unique look at combining these types of informative 

products, that are particular to LiDAR, for making biomass 

estimation with winter wheat. 

 

Index Terms— UAS, LiDAR, Biomass, Drone 

 

1. INTRODUCTION 

 

Aboveground biomass (AGB) is important within precision 

farming for monitoring the growth status of crops, making 

yield predictions, and enabling the appropriate responses [1]. 

The more often AGB is collected and with greater detail, the 

precision in the overall decision-making increases. When 

selecting methods of AGB retrieval, it is essential to consider 

the logistical flexibility and resolution of collection.  

 

Traditional biomass measurement methods are based on 

manual harvesting and weighing which are time-consuming 

and difficult to apply over large areas. Satellite remote 

sensing methods introduced nonintrusive, extensive, and 

routine collection [2]. However, there is no flexibility on 

when this data is collected as it is based on the orbital paths 

of the satellites. This timing is further interrupted depending 

on cloud conditions. Much of the available satellite data 

cannot provide sufficient resolution for precision agriculture 

applications [2]. Vehicle-mounted equipment can provide 

higher detail and accuracy but comes with poor flexibility and 

speed [2]. Unmanned aircraft systems (UAS) offer on-

demand collection with much less logistical complexity and 

price than manned airborne methods. Additionally, a UAS is 

flown below the clouds and close to the ground for higher 

detail. This comes at the cost of only being suitable for 

smaller areas with a much lower coverage to time ratio. Yet 

these systems have great potential in providing the highest 

spatial and temporal resolutions.  

 

In the last few years, LiDAR systems have been miniaturized 

thus becoming lighter and capable of being operated on UAS 

platforms [3]. LiDAR’s active signal can pass through gaps 

in vegetation cover providing information underneath the 

canopy. Since signals are capable of reaching the ground, 

accurate height measurements are possible [3] with some 

studies exploring other understory information such as tree 

trunk diameters in forests [4]. These ground points can be 

counted per unit of space for canopy density information and 

related to leaf area index (LAI) [5]. As opposed to the more 

common passive spectral sensors used in agriculture that have 

saturated data in middle to high canopy cover, LiDAR’s 

depth information tends to provide better plant 

characterization and better biomass accuracy [2].  

Linear regression techniques are most often used to relate 

UAS-derived metrics to biomass [2]. Typically LiDAR height 

is used to estimate biomass. However, some studies are 

beginning to use LiDAR density parameters with gap fraction 

(GF). No studies are using LiDAR intensity for biomass 

which has shown to be an indicator of green area index (GAI) 

and chlorophyll status [6]. This study evaluates the 

combination of LiDAR height, density, and intensity 

products into a simple multiple linear regression model when 

monitoring winter wheat over the growing season. 

 

2. METHODS 

 

2.1. Study Area 

 

The study was conducted at the PhenoRob Central 

Experiment at Campus Klein-Altendorf (CKA) in Germany. 

The area of interest consists of 72 winter wheat plots. 
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Figure 1. Overview of the winter wheat plots with destructive 

samples used for training the model in blue and those used 

for testing the model in red.  

 

Destructive samples were taken every two weeks including 

12 separate plots for the first six dates, then reduced to three 

different plots for the last two campaign dates. In total, 9 plots 

were used for training and 3 for testing the model. For the last 

two flight campaign dates, it was 2 plots for training and 1 for 

testing. The majority of the destructive sampling took place 

in the southern half of the winter wield fields as the northern 

half was primarily used for soil sampling.  

 

2.2 Equipment 

A YellowScan Surveyor LiDAR was used onboard a DJI 

Matrice 600 pro hexacopter UAS. The LiDAR is composed 

of a Velodyne LiDAR puck for sending and receiving the 

light signal, inertial measuring units (IMU) for sensor 

orientation, global navigation satellite system (GNSS) for 

sensor locations, and an onboard computer where the sensor 

information is combined and synchronized. A Septentrio 

Altus NR3 GNSS was used as a base station to provide the 

needed data for post-processed kinematics (PPK) 

georeferencing of the scanned scene.  

The UAS was flown in a crosshatch flight profile with scan 

overlaps of 50% at scan angles of 18 degrees. The flight 

altitude was 50 meters above ground level and the speed was 

5 m/s. 

2.3 Data Processing  

The base station data was combined with the LiDAR 

trajectory files in Applanix’s POSPac to produce an SBET 

file for the precise point positioning (PPP) solution. It was 

then imported into YellowScan’s CloudStation software 

where the 3D point cloud was extracted from the puck 

recording and each flight scan was registered with one 

another.  

After preprocessing, the ground was segmented from the 

vegetation as this is a core step for deriving the metrics used 

in this study. The cloth simulation filter (CSF) was used to 

make the classification of ground points parameterized based 

on the estimated point density [7]. 

 

Figure 2. The oblique perspective of the 3D point cloud 

segmentation of ground and vegetation within the study area. 

For information on the vertical extent of the vegetation, 

canopy height models (CHM) were derived using a difference 

of digital elevation models (DEM) method. The ground 

points were rasterized into 15cm grids referred to as the 

digital terrain model (DTM). The entire point cloud was 

rasterized into a digital surface model (DSM) with each cell 

containing the average height. The DTM was then subtracted 

from the DSM to produce the CHM. 

To assess the vegetation density, gap fraction (GF) was 

incorporated. GF assesses the rate at which the LiDAR signal 

penetrates through the canopy. This is done by counting the 

number of points that reach the ground as compared to the 

entire signal points within a defined area. A rasterized count 

of ground points and all points within 15cm grids was created 

where the ground points raster was divided by the all points 

raster to produce the GF ratio. 

To incorporate information about the chlorophyll content of 

the vegetation, the LiDAR signal was retrieved. The LiDAR 

signal’s wavelength is in the NIR range with a frequency 

centered on 903nm. Healthy vegetation with high chlorophyll 

will reflect more NIR and senescence vegetation will absorb 

more NIR ultimately affecting the resulting intensity of the 

LiDAR signal. The ground has intensity values that range 

between that of healthy and dying winter wheat creating noise 

in the data. Hence, the ground points are removed and the 

average intensity of the canopy pointes was recorded in a 

15cm grid rasterization. 
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Figure 3. Example visualizations of the resulting derived 

metrics used for the biomass estimations. 

 

3. RESULTS & DISCUSSION 

The CHM, GF, and intensity metrics derived from the LiDAR 

and the destructive biomass measurement data for the entire 

growing season were compared for correlations. The strength 

of each of the LiDAR predictors was able to then be 

evaluated. The CHM has the strongest correlation of 0.89 

with GF closely following with a negative 0.70 correlation. 

Intensity still has an influence as it has a negative correlation 

of 0.35. 

 

Figure 4. Correlations and histograms of crop height model 

(CHM), gap fraction (GF), and signal intensity from LiDAR 

and dry biomass from destructive sampling.  

 

An example visualization of the resulting biomass 

estimations using the multiple linear regression model 

derived can be seen in Figure 5.  

 

Figure 5. Example visualization of the 14th of July data with 

resulting dry mass (DM) biomass estimations using multiple 

linear regression utilizing LiDAR height, density, and 

intensity metrics. 

Destructive samples not used in the training were reserved for 

the testing of the model created. The results using the testing 

data from the entire growing season provided a root mean 

square error (RMSE) of 1.89 t/ha and R2 of 0.84. A graph of 

these data points can be seen in Figure 6. These results show 

that the model has promise in estimating the biomass with 

low error and good replication of its variability. 

 

Figure 6. Comparison of UAS LiDAR dry mass (DM) 

biomass estimations to the ground destructive measurements 

throughout the growing season. 

 

These results are acceptable concerning similar studies with 

UAS LiDAR biomass estimations for winter wheat. In one 

instance, using only LiDAR derived height (H) metrics such 

as Hmax, Hmajority, and Hvariety in multiple regression an 

R2 of 0.82 was achieved [8]. In another study, using a 

recently developed methodology called 3DPI that 

incorporates a multilayered gap fraction approach from a 

Beer-Lambert methodology an R2 of 0.82 was also achieved 

[3].  
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4. CONCLUSION 

This study provides an example of the versatility of LiDAR 

data when deriving various vegetation parameters that can be 

used in combination to provide accurate biomass estimations. 

Typical biomass retrieval in remote sensing is done in 

association with reflectance values. Being an active sensor, 

LiDAR expands beyond this.  Height (CHM), density (GF), 

and greenness (intensity) information from LiDAR used 

within a multiple linear regression model is showing promise 

in its effectiveness and in addition to its simplicity. 
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