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RI-DC: ROTATION-INVARIANT DETECTION AND CLASSIFICATION
FOR WHEAT HEAD DETECTION

Takeru Ito, Kuniaki Uto, Koichi Shinoda

Tokyo Institute of Technology

ABSTRACT
We propose a novel automatic detection method of wheat

heads from images taken from above wheat fields. The auto-
matic detection of heads is useful for predicting yields. For
this purpose, deep learning based methods has proved to be
effective recently, but they are not robust against the varia-
tions of head directions. To tackle this problem, we utilize
a two-step approach which first carries out object detection
for augmented test images rotated in many directions, and
then classifies the detected objects by using a classifier trained
with many rotated images. It was evaluated by using GWHD
dataset and proved to be effective.

Index Terms— rotation-invariant object detection, wheat
head detection

1. INTRODUCTION
Wheat is the most cultivated cereal crop in the world. Usu-
ally, the amount of its yield can be found only after its harvest.
If we can precisely predict its yield before its harvest, we can
deal with climate changes, unstable market demands, and var-
ious wheat diseases. Until now, yield is estimated by manu-
ally counting the number of wheat heads of a small portion of
fields, which is costly and not precise. Recently, a drone has
been often used to take images from the sky. Object detection
using deep learning from images (e.g. [1]) has been proved to
be effective. There have been several studies which use these
techniques for automatically detecting wheat heads [2–4].

Wheat heads have various directions in such images
taken. Most deep learning based object detection methods
are not designed to deal with these variations. If we can make
them robust against the rotation, its performance would much
improve.

In this paper, we propose Rotation-Invariant Detection
and Classification (RI-DC) for wheat head detection. RI-DC
consists of two steps. First, to achieve rotation-invariant pre-
diction, we augment test images by rotating them (test-time
augmentation). Unlike the conventional method [5] that uses
rotations with 90-degree interval, it can use rotations with
any intervals. We call this procedure Rotation-Invariant De-
tection (RI-D). While RI-D detects objects overlooked by
previous methods, i,e., has high recall rate, it tends to gen-
erate many false positives. To reduce them, as the second
step, we use a Rotation-Invariant Classification (RI-C) that
adapts a rotation-invariant classifier [6] to identify whether
each detected object is a head or not.

2. RELATED WORKS

2.1. Wheat Head Detection

Object detection is a computer vision task that locates objects
in an image and identifies their classes. As deep learning
has evolved, numerous object detection methods have been
proposed [1] [7] and researchers have begun to use them for
wheat head detection [2–4]. Hasan et al. [3] demonstrated
the potential of Faster-RCNN [1] for the task. Gong et al. [4]
adapted YOLO [8] to achieve real-time wheat head detection.
Unlike these previous researches that apply off-the-shelf ob-
ject detection networks, we develop rotation-invariant object
detection to detect wheat heads with various directions more
precisely.

2.2. Rotation-invariant Detection

Although there have been several rotation-invariant detection
methods [9, 10], they used images labeled with angles for
training, which needs costly annotation. In contrast to them,
we explore an approach to augmenting images at testing
stage, Test Time Augmentation [5], which predicts outputs
from multiple augmented copies of an image in the test set
and then ensembles the prediction results. With regard to
object detection, augmentation on a test image is usually a
compilation of detection results from images rotated with
90-degree intervals. In contrast, we use images rotated with
any intervals.

Several rotation-invariant image recognition methods
have been proposed. Worrall et al. [11] used filters from a
family of circular harmonics to obtain rotation-invariance.
Patrick et al. [12] rotated convolution filters and back-rotates
the corresponding feature map. Some methods [12, 13] la-
beled rotated samples as positive and feed those samples into
a network independently to train it. However, when appear-
ance of rotated positive sample is similar to that of negative,
its performance degrades. On the other hand, TI-Pooling [6]
inputs an original and rotated samples to a CNN network
at once. Rotation-invariant features are achieved by max-
pooling of features from those samples. In TI-Pooling, the
information from the other samples of the same image are
utilized to identify a positive sample as positive even when it
looks like negative.
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Fig. 1. The overview of RI-D. (a) An original image is duplicated by rotating it and object detection is applied for each of them.
(b) All detected images are rotated back to 0 degree, and then a mean-shift algorithm is used for grouping bounding boxes. (c)
The smallest rectangle that encloses the product set of all bounding boxes is defined as the final prediction.

3. PROPOSAL METHOD

The proposed RI-DC consists of two components: (3.1)
Rotation-Invariant Detection (Figure 1) and (3.2) Rotation-
Invariant Classification (Figure 2).

3.1. Rotation-Invariant Detection (RI-D)
The key assumption of the proposed rotation-invariant de-
tection, RI-D, is that a single model can realize rotation-
invariance by rotating an input image at the inference stage.
RI-D consists of the following three steps (Figure 1(a)(b)(c)).

a). An original image is duplicated and rotated to gener-
ate a set of N images I = {Ir|r = r1, r2, ..., rN}.
Here, ri = 360◦ × (i − 1)/N, (i = 1, ..., N). Ir rep-
resents an image rotated around its center by r degrees.
The size of each rotated image is adjusted to that of
the original image, and its pixels not overlapped with
the original image are filled with zeros. I is then in-
put to a detection model and the model predicts bound-
ing boxes(bboxes), each with a detection score which
represents how likely the corresponding box contains
the target object. We select 100 bboxes with high de-
tection scores for each image. We select this number
because the average number of heads in an image is
around 60. Then, we apply Non Maximum Suppres-
sion (NMS) [14] to reduce the number of boxes in Ir
to nr by eliminating redundant boxes. Finally we ob-
tain B = {Br|r = r1, ..., rN} where Br represents a
prediction result for the Ir, which consists of nr pre-
dicted boxes Br = {br,j |j = 1, ..., nr}. Each br,j is
with detection score sr,j .

b). To ensemble boxes in B to make final predictions, we
estimate which boxes in B’s with different r include
the same object. Let a center coordinate of br,j be cr,j .
Then image Ir is rotated around its center by −r de-
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Fig. 2. The overview of RI-C. We apply TI-Pooling [6] as
the classifier. Copied and rotated boxes are fed into a CNN
network. Rotation-invariant features are achieved by max-
pooling.

grees to be reset to 0-degree image coordinate. For
each cr,j , c′r,j denotes the center coordinate after ro-
tating back to 0 degree. Then we cluster a set of all
centers C ′ = {c′r,j |r = r1, ..., rN , j = 1, ..., nr} over
all the angles over all the rotated images. We employ
mean-shift algorithm [15], which is an algorithm that
aims to discover the maximum of a probability density
given by samples. For each c′r,j , the local maximum
of the density of c′s within a bandwidth, which is a pre-
defined parameter, is calculated iteratively until conver-
gence. The centers converging to the same maximum
belong to the same cluster.

c). For each cluster, we define the smallest upright rect-
angle that encloses the product set of all boxes as the
predicted box, and its detection score is calculated by
averaging scores of bboxes in the cluster.

RI-D feeds an image into the detection network N times. We
do not have to limit the number N . As a detector, we select
EfficientDet [7] for its balanced computational efficiency and



accuracy.

3.2. Rotation-Invariant Classification (RI-C)
RI-D generates predictions N times with different Irs and
may detect negative samples with high detection scores as
positive in some Ir’s even after NMS and clustering. Thus,
RI-D tends to generate many false positives. To screen them,
we add a subsequent classification network which classifies
the predictions into wheat heads (true positive) and back-
ground (false positive).

We use TI-Pooling [6] for the classifier. In TI-Pooling,
each bbox generated by the detection model is augmented
with rotation and fed into the network all at once to extract
rotation-invariant features (Figure 2). An image cropped with
a predicted bbox that has a detection score sb is input to the
TI-Pooling network and the network outputs st. The final de-
tection score sa is calculated by

sa = wsb + (1− w)st, (1)

where w is a control parameter. We call this part as RI-C.

3.3. RI-DC
In RI-DC, RI-D and RI-C are concatenated in series. In the
first step, RI-D detects most of the candidates with high recall,
RI-C then screens the candidates.

4. EXPERIMENTS
4.1. Dataset
We use Global Wheat Head Detection dataset [16] to evalu-
ate our method. It consists of high resolution RGB images of
wheats with various sizes, growth stages and genotypes col-
lected from around the world. The images were taken from
a height in the range of 1.8 m to 3 m above the ground. We
use images from source [usask 1, arvalis 1, inrae 1, arvalis 3,
rres 1] as a training set and [ethz 1, arvalis 2] as a validation
set. The training and validation sets contain 2422 and 951
images, respectively.

4.2. Implementation Details
To evaluate the detection performance, EfficientDet is trained
as the baseline and the same model is used for RI-DC to vali-
date effectiveness. In the training of EfficientDet, the images
are resized to 512x512 with batch size 4, epoch 100 and learn-
ing rate 0.0002. In RI-DC, N is 18, which means the rotation
interval is 20 degrees.

In RI-C training, positive and negative samples are fed
into the classification after being resized to 32x32. Its training
samples are predicted boxes from a detection model trained
with GWHD training set. We select positive samples that
have higher than 0.7 IoU with the ground truth, and negatives
that have lower than 0.5. Cross Entropy Loss is used for the
loss function with batch size 64, epoch 50 and learning rate
0.00001.

We run inference on a NVIDIA Titan Xp GPU that has
12GB memories and Mean Average Precision (mAP) whose
IoU thresholds is 0.5 (mAP50) is used as evaluation metrics.

Table 1. Comparison with baseline
method mAP50(%)
EfficientDet [7] 86.0
RI-D 87.9
RI-C 87.4
RI-DC 88.4

zoom in

Fig. 3. PR curve comparison of the proposed methods with
the baseline.

We select the optimal bandwidth used in mean-shift, 10 pixel,
by our preliminary experiment and w = 0.5 used in (1).

4.3. Experiment Results
Table 1 shows mAP comparison between the baseline, RI-D,
RI-C and RI-DC. Figure 3 shows their Precision and Recall
curves (PR curve). RI-D and RI-C have higher mAP50 than
the baseline (86.0%) by 1.9 point and 1.4 point, respectively.
Furthermore, their combination is higher by 2.4 point. These
results demonstrate that our proposed method is effective.

We further conducted ablation studies with different N =
[1, 2, 4, 9, 18]. For instance, N = 1 means r1 = 0 and N = 2
means r1 = 0, r2 = 180. Figure 4 shows PR curves for differ-
ent Ns. As the value N increases, the performance improves.
Particularly, improvements can be seen in between N = 4,
N = 9 and N = 18. On the other hand, a downside of our
method is that the larger N is, the longer it takes to infer a
single image. In other words, there is a trade-off between the
inference speed and accuracy.

4.4. Qualitative evaluation
To evaluate our proposed method qualitatively, we visualize
some examples of detection results in Figure 5. In the upper
row, RI-D detects heads that are not detected by the baseline.
In the lower row, a large predicted box is falsely generated
by RI-D but properly eliminated by the subsequent RI-C. It
means RI-C correctly identifies false positive.
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Fig. 4. Comparison of mAP and inference speed when chang-
ing N .

Fig. 5. Examples of detection. Green box and red box rep-
resent the ground truth and the predicted box, respectively.
From left to right, (1) baseline, (2) after RI-D and (3) after
RI-DC.

5. CONCLUSION
In this paper, we proposed RI-DC, which is composed of
rotation-invariant object detection and subsequent rotation-
invariant classification. Compared to the baseline, RI-D and
RI-C improve mAP by 1.9 point and 1.4 point respectively,
and RI-DC achieves the highest improvement by 2.4 point.
From these results, we conclude that our proposed rotation-
invariant model is effective for the automatic wheat head de-
tection. For further study, we will explore the way to speed
up inference.
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