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ABSTRACT

Contemporary transfer learning-based methods to alle-
viate the data insufficiency in change detection (CD) are
mainly based on ImageNet pre-training. Self-supervised
learning (SSL) has recently been introduced to remote
sensing (RS) for learning in-domain representations.
Here, we propose a semantic decoupled representation
learning for RS image CD. Typically, the object of in-
terest (e.g., building) is relatively small compared to
the vast background. Different from existing methods
expressing an image into one representation vector that
may be dominated by irrelevant land-covers, we disen-
tangle representations of different semantic regions by
leveraging the semantic mask. We additionally force the
model to distinguish different semantic representations,
which benefits the recognition of objects of interest in
the downstream CD task. We construct a dataset of
bitemporal images with semantic masks in an effort-
less manner for pre-training. Experiments on two CD
datasets show our model outperforms ImageNet pre-
training, in-domain supervised pre-training, and several
recent SSL methods.

Index Terms— Change detection, remote sensing
image, representation learning, self-supervised learning

1. INTRODUCTION

Remote sensing (RS) image Change detection (CD) is
the process of identifying changes of interest in RS im-
ages in the same geospatial region taken at different
times. The key of CD is to identify real changes (e.g.,
buildings) while ignoring irrelevant changes (e.g., illu-
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mination, seasonal difference, and unconcerned land-
cover changes).

Despite the great success of deep learning (DL)-
based CD methods [1], the lack of a large labeled CD
dataset limits their generalization on real-world appli-
cations. The most common way to handle data in-
sufficiency is to fine-tune the model from ImageNet
pre-training. Considering the domain gap between nat-
ural and RS images, a new trend is to pre-train on the
RS data to learn in-domain representations [2–5]. Su-
pervised pre-training depends on labeled samples [2, 3],
while self-supervised learning (SSL) makes use of unla-
beled data [4, 5] by performing instance discrimination.

Most existing contrastive SSL methods [4, 5] ex-
press an image into one representation vector, which
is usually coupled with objects of interest and back-
grounds. Different from the object-centered natural
image (i.e., ImageNet), small objects (e.g., buildings)
typically present in various positions in an RS image.
Simply performing contrastive learning on the coupled
representation is not optimal because the background
may dominate the representation due to class imbalance
and make that of the object of interest ineffective.

We propose Semantic Decoupled Representation
Learning (SDRL) to disentangle representations of the
interest objects and others by leveraging the semantic
mask to spatially pool the per-pixel image embeddings
into several semantic vectors. We have two views for
each semantic vector by applying synthetic image aug-
mentations. We follow SimSiam [6] to implement the
cross-view (i.e., a positive pair) similarity. We further
utilize semantic relations to learn discriminative features
by pushing away different semantic vectors. We collect
in an effortless manner a dataset containing bi-temporal
RS images and building masks for pre-training.

Our main contribution is to incorporate semantic
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Fig. 1. Illustration of our semantic decoupled representation learning.

masks into contrastive SSL to learn transferable fea-
tures for the downstream CD. Experiments on two CD
datasets [7, 8] demonstrate our method outperforms Im-
ageNet, in-domain supervised pre-training, and several
SSL methods, including the very recent SeCo [4].

2. THE PROPOSED METHOD

2.1. Network Architecture

Fig. 1 illustrates the proposed Semantic Decoupled
Representation Learning. Our architecture consists of a
Siamese encoder/projector and a predictor. The Siamese
encoder converts the input image views to semantic
disentangled representations by leveraging semantic
masks. Such intermediate representations are then pro-
jected into an embedding space by the projector. The
predictor is employed to predict the representation of a
view from that of another view.

Views generation. Given an input sample consist-
ing of a bitemporal image Iti , i ∈ {1, 2} and a seman-
tic mask M, we randomly generate two views Itij , j ∈
{1, 2} from each temporal image via synthetic augmen-
tations. The semantic mask Mti

j is also generated by
applying the same geometric augmentation as that in Itij .

Disentangling semantic representations. Two
views Iti1 , I

ti
2 are then encoded by a Siamese encoder

f into dense representations Xti
1 ,X

ti
2 ∈ RH×W×C .

Instead of pooling the per-pixel features into one vec-
tor, we decouple the global representation into several
representation vectors by separately pooling features in
each semantic region. Formally, the disentangled rep-
resentations xti

jk ∈ RC , k ∈ {1, 2, ...,K} are calculated

by

xti
j1, ...,x

ti
jK = MaskedPool(Xti

j ,M
ti
j ), (1)

where K denotes the number of semantic categories.
Specially, we use the binary mask to disentangle rep-
resentations of foreground objects (i.e., buildings) and
background. Therefore, we set K = 2. Note that seman-
tic masks are resized to the same shape as the feature
map before performing masked pooling.

Semantic dissimilarity. Although representations
of different semantic regions are decoupled, the relation-
ship between them is not utilized. We employ a sim-
ple cosine-similarity-based loss to push away represen-
tations of different semantic regions. Our intuition is to
enlarge the angle between the two vectors (i.e., repre-
sentations of the foreground and the background) in the
embedding space by minimizing their cosine similarity.
Given the two embeddings xti

j1,x
ti
j2 of a view j of a tem-

poral image i, the semantic dissimilar (SE) loss Ltisd,j is:

Ltisd,j = D(x
ti
j1,x

ti
j2) + 1, (2)

where D(·, ·) denotes the cosine similarity. 1 is supple-
mented to ensure a non-negative value.

In our data configuration, the semantic mask is
paired with It1 , but may not perfectly match It2 due
to the inherent real changes. Therefore, we only use
views from It1 to calculate the SE loss for one sample:
Lsd = 1

2

∑2
j=1 L

t1
sd,j .

Cross-view similarity. We follow SimSiam [6] to
implement the cross-view similarity. Each semantic rep-
resentation xti

jk is projected into a space Z ∈ RC′
by a

MLP head (projector) g to projection vectors ztijk. An-
other MLP head (predictor) h : Z 7→ Z transforms one
view (e.g., zti1k) to a prediction vector (e.g., pti

1k ∈ RC′
)



and matches it to the other view (e.g., zti2k). We minimize
the negative cosine similarity of cross-view representa-
tions. A symmetric similarity loss is defined as:

Ltis,k = 1− 1

2
(D(pti

1k, sg(zti2k)+D(p
ti
2k, sg(zti1k))), (3)

where sg(·) means a stop-gradient operation. Previous
work [6] shows such operation is vital to prevent model
collapse. The similarity loss for one sample is given by
Ls = 1

4

∑2
i=1

∑2
k=1 L

ti
s,k.

Overall loss for one sample is given by: L = Lsd +
Ls. The total loss is averaged over all samples in a batch.

2.2. Implementation Details

Encoder. We use the ResNet-18 [9] without fully con-
nected layers (fc) and global pooling as f . We simply
add a bilinear interpolation layer with an upsampling
factor of 4 behind the ResNet-18 to reduce the loss of
spatial details. The dimension C of output is 512.

Projector/Predictor. g, h are 2-layer MLPs with an
output dimension C

′
= 1024. Their hidden dimensions

are 1024 and 256. BN and ReLU are added between fc.
Data augmentation. We use similar augmentations

in SimSiam, including color jittering, Gaussian blurring,
random flip. Note that we do not apply the random crop.

Optimizer. We use SGD with a base learning rate
of 0.01 and a poly decay schedule. We set the weight
decay to 0.0005 and the SGD momentum to 0.9. The
default number of epochs is 20 and the batch size is 64.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

Pre-training Dataset. We leverage image-label pairs
from the existing Inria building dataset [10], which
provides 180 labeled RS images (5000 × 5000, 0.3
m/pixel). The data is labeled into the building and non-
building classes. For each image (t1) in Inria, we obtain
a co-registered image as temporal augmentation (t2) via
Google Earth. In this way, we collect bitemporal im-
ages with semantic building masks. We cut images into
patches of size 256 × 256 with no overlap and remove
patches not containing building regions. It results in
more than 45k patch samples. We randomly split it into
training (80%) and validation sets (20%). Note that due
to building changes over time, the semantic mask may
not perfectly match the image of t2.

CD Datasets. We conduct experiments on LEVIR-
CD [7] and WHU-CD [8] to evaluate the pre-trained
model. We follow [11] to split each dataset into train-
ing, validation, and testing sets. Each image is cut into
small patches of size 256× 256 with no overlap.

CD networks. We employ a simple yet effective
change detection model [12]. Differently, we use a more
light FPN-based decoder head [13] for the feature ex-
tractor. Please refer to [12] for more implementation
details.

Evaluation Metrics. We use the F1-score of the
change category as the evaluation indices.

Our models are implemented on PyTorch and trained
using a single NVIDIA RTX 3090 GPU.

3.2. Overall Comparison

We compare with several baselines, including random
initialization, ImageNet pre-training, in-domain super-
vised pretraining (Sup.), and two SSL methods.

In-domain Sup.: We employ an FCN-based seman-
tic segmentation network with a ResNet-18 backbone
and an FPN head [13], supervised by the image-mask
pairs from our pre-training dataset. The best model on
the validation set is used for the downstream task.

SimSiam [6]: A state-of-the-art contrastive method
that does not require negative samples and uses stop-
gradient and predictor to prevent model collapse.

SeCo [4]: A MoCo-based [14] method that uses
multi-temporal RS images as natural augmentations to
learn seasonal invariant/variant representations.

For a fair comparison, we implement these SSL
methods using their public codes with default hyperpa-
rameters on our pre-training dataset.

We set a variety of data conditions: 1%, 5%, 20%,
and 100%, each of which represents a proportion of
available labeled training data. From Tab. 1, we can
observe that the proposed method consistently outper-
forms other pre-trained models on the two CD datasets,
especially in the small data regimes. Interestingly, we
can achieve comparable results with only 20% training
data than the baseline (random) using 100% data. It
indicates our SDRL can effectively alleviate data in-
sufficiency. Our model also outperforms the strong
ImageNet pre-training the recent SeCo. We can observe
in-domain sup. shows relatively poorer results on the
WHU-CD dataset than on the LEVIR-CD dataset. It is
because subdomain diversity may be present in differ-



Table 1. Comparisons of pre-trained models on the
LEVIR-CD and WHU-CD test sets. F1-score is given.

LEVIR-CD WHU-CD
1% 5% 20% 100% 1% 5% 20% 100%

Random 21.32 47.05 80.30 87.63 39.25 66.14 71.35 84.49
ImageNet 24.33 65.18 85.76 88.16 32.42 73.52 81.98 88.55

In-domain Sup. 29.29 71.96 85.68 88.06 50.55 70.03 71.56 83.25
SimSiam [6] 22.44 57.73 82.24 88.00 42.09 66.10 73.41 84.69

SeCo [4] 40.78 71.23 84.02 88.27 51.68 72.15 80.00 88.09

Ours 46.62 77.48 87.18 88.61 64.14 76.50 84.17 89.41
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Fig. 2. Accuracy of models for each training epoch. The
mean F1-score is reported.

ent RS datasets. The traditional supervised pre-training
may overfit patterns in a certain domain and lack trans-
ferability to another. Our empirical results indicate that
our SDRL can learn more transferable features than
supervised pre-training.

Fast convergence. Fig. 2 illustrates the validation
accuracy (mean F1) for each epoch using 5% LEVIR-
CD/WHU-CD training data. Our SDRL outperforms
others in terms of accuracy and stability. It indicates
that SDRL accelerates fine-tuning convergence and in-
curs better performance on the downstream CD task.

4. CONCLUSION

We proposed a semantic decoupled pre-training method
for RS image CD. We incorporate the semantic informa-
tion into a contrastive learning framework to disentangle
representations of different semantic regions (buildings
and others). Semantic dissimilarity is utilized to guide
the model to distinguish foreground from background.
Experiments on two CD datasets verify the effective-
ness of the proposed method. Our SDRL outperforms
ImageNet, in-domain supervised pre-training, and sev-
eral SSL pre-training methods. Empirical results indi-
cate SDRL can well alleviate the data insufficiency in
CD. We can achieve comparable results using only 20%
training data than baseline (random) using 100% data.
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