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ABSTRACT

In this study, a Semi-Supervised Learning (SSL) method
for improved urban change detection from bi-temporal im-
age pairs is presented. The proposed method employs a
Dual-Task Siamese Difference network that not only pre-
dicts changes with the difference decoder, but also segments
buildings for both images with a semantic decoder. First, the
architecture was modified to produce a second change pre-
diction derived from the semantic predictions. Second, SSL
was used to improve supervised change detection. For unla-
beled data, we designed a loss that encourages the network
to predict consistent changes across the two change outputs.
The proposed method was tested on urban change detection
using the SpaceNet7 dataset. SSL achieved improved re-
sults compared to three fully supervised benchmarks. Code
for the paper is available at https://github.com/
SebastianHafner/SiameseSSL.git.

Index Terms— remote sensing, deep learning, semantic
segmentation, consistency regularization, change detection

1. INTRODUCTION

Urbanization is progressing at an unprecedented rate in many
places around the world. Earth observation is a crucial tool
to map land cover changes associated with urbanization.
Change detection is typically conducted by comparing im-
ages acquired at different times that cover the same geograph-
ical area. Therefore, change detection is considered a binary
classification problem [1].

In computer vision, the process of linking each pixel in
an image to a class is referred to as semantic segmentation.
Fully convolutional networks have become the state-of-the-
art method for segmentation tasks by leveraging large col-
lections of examples (i.e., labeled data). Fully convolutional
networks such as the encoder-decoder architecture U-Net [2]
can easily be adopted for change detection by concatenating
bi-temporal image pairs along the channel axis, also referred
to as Early Fusion (EF) [3]. However, network architectures
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tailored to Earth observation change detection tasks may be
more promising than off-the-shelf architectures adopted from
computer vision. Daudt et al. [3] proposed two Siamese net-
work architectures that pass images separately through two
encoders with shared weights, before fusing the extracted in-
formation in a decoder. Several improvements to Siamese
networks have since been proposed by, for example, learning
more discriminative features from the input images [4].

Despite these efforts, current research on change detec-
tion with Siamese networks is predominately based on fully
supervised learning; and thus, dependent on large collections
of labeled data. However, change labels are scarce and man-
ually annotating data is costly and time-consuming. On the
other hand, unlabeled satellite data is plentiful. Therefore, it
is desirable to investigate Semi-Supervised Learning (SSL) to
improve supervised change detection by incorporate readily
available unlabeled satellite data, alongside labeled satellite
data, into network training [5].

In this paper, we expand on a Siamese network architec-
ture developed by others [3, 4] and propose a new learning
task for unlabeled data. In combination with labeled data, we
train the network using SSL and demonstrate its effectiveness
by comparing it to several fully supervised benchmarks on the
SpaceNet7 dataset [6].

2. METHODOLOGY

2.1. The proposed method

The proposed method consists of a new network architecture
and a loss function to train the network in a semi-supervised
fashion. The proposed network architecture (Fig. 1) is an
extension of the Siamese Difference (Siam-Diff) architecture
introduced by Daudt et al. [3]. The Siam-Diff network pro-
cesses images separately in encoders with shared weights (red
arrows) to extract corresponding features (f1–f5) from image
t1 and t2. The temporal features are then being forwarded
via skip connections (black arrows) to the respective level of
the difference decoder where they are subtracted from one an-
other before being passed through subsequent layers. We in-
corporated the Dual-Task concept from Liu et al. [4] into our
Siam-Diff network by adding decoders with shared weights
for the semantic segmentation of buildings in images t1 and
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t2. Liu et al. [4] successfully used the Dual-Task concept to
extract more discriminative features from input images with
a Siamese network, which, in turn, improved change detec-
tion results. However, we use the building segmentation task
not only to learn more discriminative features but also for
SSL. To this end, the concatenated building outputs are passed
through a 1x1 conv layer, generating an additional change
output (pcs). In total, our network produces four outputs:
buildings segmentations for image t1 (pt1s ) and t2 (pt2s ), a
change output from the building segmentation (pcs) and the
change output from the difference decoder (pc).

The four network outputs are used to train the network in
a semi-supervised fashion using a loss function composed of
two supervised terms for labeled samples, namely for seman-
tic (Ls) and change (Lc), and a consistency term (Lcons) for
unlabeled samples. The loss function is formally defined as
follows:

Ls = L(pt1s , yt1s ) + L(pt2s , yt2s )

Lc = L(pc, yc) + L(pcs, yc)
Lcons = L(pc, pcs)

Lsample =

{
Ls + Lc, if y exists
ϕ ∗ Lcons, otherwise

(1)

where s and c denote semantic and change, respectively.
Accordingly, cs denotes change derived from the semantic
outputs. For labeled samples, ground truth exists for the
buildings at t1 (yt1s ) and t2 (yt2s ), and the derived change (yc).
The consistency loss term encourages change predictions to
agree on unlabeled samples. Hyper-parameter ϕ is used to
tune its impact on the overall loss. Power Jaccard was used
for all loss terms [7].

2.2. Dataset

The proposed method was tested on the multi-temporal
SpaceNet7 dataset [6]. It consists of temporal stacks of
monthly Planet composites, including corresponding manu-
ally annotated building footprints, ranging from the begin-
ning of 2018 to 2020. An overview of the 60 SpaceNet7 train
sites, split into training, validation and test set, and the 40
SpaceNet7 test sites used as unlabelled data is shown in Fig.
2. Timestamps affected by clouds were removed from the
dataset.

2.3. Network training and performance assessment

Training samples were generated by randomly selecting two
timestamps from the time series of a site. The building labels
for these timestamps, obtained from rasterizing the building
footprints, were used to compute the change label. Twenty
patches of size 256x256 pixels were then randomly cropped
from the change label, before assigning each patch a prob-
ability according to its change pixel percentage, including a

base probability for patches with no change pixels. A single
patch was chosen based on those probabilities to oversample
change pixels during training. Per epoch, one hundred sam-
ples were drawn from each site. The network was trained
for 100 epochs with batch size 8 and an initial learning rate
of 10-4, using AdamW as optimizer. Horizontal and vertical
flips and rotations (k ∗ 90◦, where k ∈ {0, 1, 2, 3}) were used
as data augmentations. Network training, implemented in Py-
Torch, was done on a NVIDIA GeForce RTX 3090 GPU. For
the quantitative performance assessment, F1 score, precision
(P) and recall (R) were used, defined as follows:

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2 ∗ P ∗R

P +R
(2)

where TP, FP and FN are true positives, false positives and
false negatives, respectively.

3. RESULTS AND DISCUSSION

Loss curves for the change, semantic and consistency term
are shown in Fig. 3. At the beginning of training, losses for
change and semantic rapidly decreased but then slowed down.
In contrast, consistency loss first went up, before decreasing
slowly. After approximately 50 epochs, all losses converged
and remained relatively stable.

The performance of our proposed method was compared
with three fully supervised benchmarks: EF U-Net [3], Siam-
Diff [3] and Siam-Diff + Dual-Task [4]. To run a fair com-
parison, we adopted the concept from the papers but used en-
coder and decoder architectures identical to the ours (Fig. 1),
as well as an identical training setup (Section 2.3). In terms of
quantitative results (Table 1), our method achieved the high-
est F1 score on the test set (0.559), followed by Siam-Diff +
Dual-Task (0.529). The lowest F1 score was obtained from
Siam-Diff (0.484). For all networks, recall is good (0.650 +)
but precision is relatively low with our method achieving the
highest value (0.490). In contrast, the benchmarks did not
exceed precision values of 0.450.

Table 1: Quantitative change detection comparison of our
method with benchmarks replicated using our encoder and
decoder architectures and training setup.

F1 score Precision Recall

EF U-Net [3] 0.525 0.440 0.651
Siam-Diff [3] 0.484 0.368 0.704
Siam-Diff + Dual-Task [4] 0.529 0.440 0.664
Siam-Diff + Dual-Task + SSL 0.559 0.490 0.651

A qualitative comparison was done for sites in Mexico,
India and China (Fig. 4 from top to bottom). Generally,
change detection ability of our network is better than that
of the benchmark networks, indicated by fewer FNs (purple).



Fig. 1: Diagram of the proposed Dual-Task Siam-Diff network for urban change detection with semi-supervised learning.
Diagram style was adopted from [3] where blue, yellow, red and purple blocks denote the operations convolution, max pooling,
concatenation and transpose convolution, respectively. Red arrows illustrate shared weights.

Fig. 2: Overview of the SpaceNet7 sites constituting our
training, validation and test set.

However, a considerable amount of building constructions at
small scale was not detected by any of the networks. Incor-
rectly detected changes (green) are mostly located around cor-
rectly detected change areas.

Despite improvements upon the supervised benchmarks,

Fig. 3: Loss terms comprising the loss function for the pro-
posed change detection method using semi-supervised learn-
ing.

the proposed method is limited by the fact that both change
outputs are based on the same underlying feature extraction.
Therefore, encouraging consistency across change outputs
fails to considerably improve the feature extraction; and thus,
the learning potential from unlabeled data using the pro-
posed consistency task may be limited. We assume that a



Fig. 4: Qualitative comparison between the results obtained by (d) our Siam-Diff + Dual-Task + SSL method, (e) EF U-Net [3],
(f) Siam-Diff [3] and (g) Siam-Diff + Dual-Task [4]. Images for t1 and t2 and the ground truth are shown in (a), (b) and (c),
respectively. Legend for results: white is true positive, black is true negative, green is false positive and purple is false negative.

more promising approach is to incorporate fusion of radar
and optical data into SSL, since consistency across these data
modalities is a powerful SSL task. Moreover, the different but
complementary information in radar and optical data proved
to be promising for urban change detection in combination
with deep learning [8].

4. CONCLUSION

This study presents an improved method for urban change de-
tection using a modified Dual-Task Siamese Difference net-
work for SSL. In the proposed method, the two change out-
puts of our network are harnessed for a consistency learning
task on unlabeled data. Experiments on the SpaceNet7 dataset
showed that the proposed method improves upon fully super-
vised benchmarks. Future work will focus on incorporating
multi-modal data into the proposed method.
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