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AETOMO-NET: A NOVEL DEEP LEARNING NETWORK FOR TOMOGRAPHIC SAR

IMAGING BASED ON MULTI-DIMENSIONAL FEATURES
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University of Electronic Science and Technology of China

ABSTRACT

Tomographic synthetic aperture radar (TomoSAR) imaging

algorithms based on deep learning can effectively reduce

computational costs. The idea of existing researches is to

reconstruct the elevation for each range-azimuth cell in one-

dimensional using a deep-unfolding network. However, since

these methods are commonly sensitive to signal sparsity level,

it usually leads to some drawbacks like continuous surface

fractures, too many outliers, et al. To address them, in this

paper, a novel imaging network (AETomo-Net) based on

multi-dimensional features is proposed. By adding a U-Net-

like structure, AETomo-Net performs reconstruction by each

azimuth-elevation slice and adds 2D features extraction and

fusion capabilities to the original deep unrolling network. In

this way, each azimuth-elevation slice can be reconstructed

with richer features and the quality of the imaging results will

be improved. Experiments show that the proposed method

can effectively solve the above defects while ensuring imag-

ing accuracy and computation speed compared with the tra-

ditional ISTA-based method and CV-LISTA.

Index Terms— Tomographic SAR, convolutional neural

network, multi-dimensional features, compressed sensing

1. INTRODUCTION

Tomographic synthetic aperture radar (TomoSAR) imaging,

a technology that uses multiple angle observations to achieve

the three-dimensional reconstruction of the imaging scenario,

has been extensively studied in the past few decades. It has

been widely used in earth remote sensing, resource explo-

ration, and many other fields.

A typical class of methods for elevation reconstruction is

the one based on compressed sensing (CS) theory. They com-

plete the elevation reconstruction by solving a sparse linear

inverse problem [1]. There have been some methods proposed

based on it [1], [2], and they have achieved good performance.

However, as they commonly do reconstruction iteratively, it

will lead to an expensive computational cost [3].

Recently, deep learning (DL) has been successfully ap-

plied in natural language processing, images classification,

recommendation system, and many other fields. Some meth-

ods, like LISTA [4], TISTA [5], et al, begin to use DL to solve

the sparse linear inverse problem. Once training, the model

can apply to all the reconstruction tasks under the same sce-

nario without any other iterative calculations. Compared with

the traditional CS method, it will greatly reduce the computa-

tional complexity.

Now, a few studies, like CV-LISTA [3] have used deep

learning to solve the problem of tomography reconstruction.

They regard elevation reconstruction as a one-dimensional

process and use the LISTA-like method to reconstruct sep-

arately for each range-azimuth cell. Using these methods, the

computational costs can be greatly reduced while maintain-

ing good performance. However, these methods are sensi-

tive to signal sparsity level [6]. The results of them usually

have some phenomenon like fractures of continuous planes,

too many outliers, et al. It seriously affects the quality of

imaging results.

When using LISTA-like methods, because of the way

they are performed, they only reconstruct based on one-

dimensional information. But in the TomoSAR results, there

is a certain correlation between adjacent pixels, that is, there

are multi-dimensional features that we can use. If these

multi-dimensional features are added to the TomoSAR imag-

ing process, the reconstruction can be completed based on

more abundant features. In this way, the imaging quality can

be improved.

U-Net [7] is a CNN architecture that makes full use of 2D

features. Its contracting path completes the successive extrac-

tion of 2D features of different depths, and the expansive path

fully integrates and utilizes 2D features of different depths.

Inspired by it, we propose our network called AETomo-

Net to perform TomoSAR imaging using multi-dimensional

features. Firstly we use a LISTA-like architecture to do pre-

imaging for each range-azimuth cell. Then we add a fully

convolutional structure to extract 2D features of azimuth-

elevation slices. After that, the feature maps of different

depths are fully fused. Finally, we use the other LISTA-like

structure to perform the final imaging. Experiments show

that the results of AETomo-Net have better continuity in

the structure of the continuous plane and have fewer out-

liers compared with the traditional ISTA-based method and

CV-LISTA. It indicates that the addition of CNN structure

integrates 2D features of azimuth-elevation slices effectively

into the imaging process.
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Fig. 1. Structure of AETomo-Net. It consists of four parts. In this figure, each structure in a rounded rectangle is a part of

AETomo-Net. The blue solid rectangles represent the size of feature maps. And other legends are marked in the lower right

corner of the figure. In our experiments, we set N1 = 16 and N2 = 32.

2. METHODOLOGY

According to the previous research [1], observing the imaging

scenario from multi baselines is equivalent to a process of

sparse sampling, which can be expressed as

g = Rγ + n, (1)

where, g ∈ C
M is the observation data, R ∈ C

M×N is

the measurement matrix, γ ∈ CN represents the scattering

characteristics of the observation scenario, n is the noise, and

M ≪ N . The purpose of TomoSAR is to reconstruct γ from

the observation data g.

CV-LISTA [3] solve it by mapping an iteration of the tra-

ditional ISTA to a basic block expressed in equation (2) and

solve it in learning way. It is a 1D process which do recon-

struction for each range-azimuth cell respectively.

γ̂k = softθk (W1g +W2γ̂k−1) . (2)

However, CV-LISTA is sensitive to sparsity level. So us-

ing it for TomoSAR can cause some problems like continuous

surface breakage, too many outliers, etc.

This problem can be solved by adding abundant multi-

dimensional features. In this paper, we propose a novel net-

work called AETomo-Net to achieve that. Our main idea is

imaging combined with multi-dimensional features. The ar-

chitecture of it is illustrated in Fig. 1.

In general, AETomo-Net consists of four parts, i.e. pre-

imaging, 2D features extraction, 2D features fusion and fi-

nal imaging. By adding a fully convolutional structure to the

deep-unfolding structure, we extract 2D features of azimuth-

elevation slices and fuse them into 1D imaging data. In this

way, we integrate 2D information into the process of the To-

moSAR imaging algorithm, which is originally a 1D process,

to improve its performance. The details of each part will be

introduced as follows.

2.1. Pre-Imaging

Inspired by CV-LISTA, we design an RNN-like structure with

N1 blocks to do pre-imaging for each range-azimuth cell of

the current processing azimuth-elevation slice.

In this part, the observation data is processed along one

dimension. After performing through this structure, the To-

moSAR observation data is initially focused along the eleva-

tion direction.

2.2. 2D Features Extraction

The second part is composed of a series of convolution layers.

It is used to extract 2D features of azimuth-elevation slices.

This part consists of three blocks. Each block uses two

convolution layers with 3× 3 kernel, each followed by a rec-

tified linear unit (ReLU), and one 2×2 max pooling operation

with stride 2 to do downsampling. After each downsampling,

the size of one single feature map is divided by 4 and the num-

ber of feature maps is multiplied by 2. Each time a block is

processed, deeper 2D salient features will be extracted once.

At the end of this stage, we will obtain a feature map contain-

ing the deep 2D features extracted from the current processing

azimuth-elevation slice.

2.3. 2D Features Fusion

We use a series of transposed convolution operations to finish

2D feature fusion. It is also composed of three blocks.

Before the start of each block, the size of the feature map

is multiplied by 4 using a 2× 2 transposed convolution. Then
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Fig. 2. Demonstration of imaging results of a long oblique plane. (a) Front view of imaging result using (F)ISTA; (b) Left

view of imaging result using (F)ISTA; (c) Front view of imaging result using CV-LISTA; (d) Left view of imaging result using

CV-LISTA; (e) Front view of imaging result using AETomo-Net; (f) Left view of imaging result using AETomo-Net.

merge it with the symmetric feature maps of the 2D feature

extraction part and halve its number twice by 3 × 3 convo-

lution layers. After multiple steps of up-sampling, merging,

and twice convolutions, the 2D features of TomoSAR data at

different depths are plenty fused.

2.4. Final Imaging

At the end of AETomo-Net, considering that the added 2D

features will have redundancy, we use the other RNN-like

structure with N2 blocks to perform final imaging.

Similar to the first part, we use the other deep-unfolding

structure to perform a 1D process to complete the final imag-

ing of the data fused with 2D features. After this stage, we

can get the final result of TomoSAR imaging.

3. EXPERIMENTS

3.1. Dataset

AETomo-Net is trained on our simulated data. We firstly con-

vert 3D models to point clouds using PCL 1.12.0. Then we

simulated the observation data of different baselines in a sim-

ilar way to RaySAR [8].

In our experiments, fourteen 3D models of architecture

were used to finish this simulation task. We used 24 uniform

distributed baselines in the range of −200m to 200m and set

the height of the reference baseline to 5.0456 × 105m. The

scenario center oblique distance R0 was set to 6.1434×105m
and the radar incidence angle of the reference baseline was set

to 34.78◦. And, the SAR system we simulated worked in X-

band, so we set the wavelength to 0.031m.

3.2. Data Loading

To effectively use 2D features, we redesigned an approach

of data loading. While loading data, the data of an azimuth-

elevation slice is loaded instead of random data of multiple

range-azimuth cells. In the first and fourth parts of AETomo-

Net, like the previous algorithms, it is still a 1D process. But

in the second and third parts, it is a 2D process. In this way,

we can utilize AETomo-Net to efficiently acquire 2D features

for TomoSAR imaging.

3.3. Loss Function Design

In the training of AETomo-Net, we need to consider three

constraints to ensure that each part works well, which are,

(1) the performance of pre-imaging, (2) the performance of

features extraction and fusion, and (3) the final imaging effect.

Given a training data {gi, γ
∗

i
}, we will get the pre-imaging

result γ̂
(1D)
i

, the output data fused with 2D features γ̂
(2D)
i

and

the final imaging result γ̂i in the process of AETomo-Net. For

better imaging quality, we expect that these three results to

be as close to the ground truth as possible. Meanwhile, we

need to constrain the sparsity of the final imaging result γ̂i.

Therefore, the loss function of AETomo-Net is designed as

follows.

L = L1D + αL2D + βLim, (3)

with,










L1D = 1
Ns

∑Ns

i=1 ‖γ̂
(1D)
i

− γ∗

i
‖22

L2D = 1
Ns

∑

Ns

i=1 ‖γ̂
(2D)
i

− γ∗

i
‖22

Lim = 1
Ns

∑Ns

i=1

[

‖γ̂i − γ∗

i
‖22 + λ‖γ̂i‖1

]

,



where α, β are weight terms to adjust the importance of each

part in the training process, λ is a trade off term to balance the

error and sparsity of results and Ns is the number of range-

azimuth cells in a single azimuth-elevation slice. In our ex-

periments, we set α = 0.6, β = 2.2, λ = 0.05 and Ns = 100.

4. RESULTS

Fig. 2 shows the demonstration of imaging results using

(F)ISTA, CV-LISTA, and AETomo-Net respectively. Note

that we use a long oblique plane to show the imaging quality.

The plane is not parallel to any axes, which is more in line

with the real situation.

Apparently, there are less fracture in Fig. 2(e)(f) than

Fig. 2(c)(d). The reconstruction result using AETomo-Net

is more continuous. And there are fewer outliers in the result

of AETomo-Net compared with (F)ISTA and CV-LISTA. The

accuracy of AETomo-Net is also higher.

Then we used three different metrics to evaluate the per-

formance of (F)ISTA, CV-LISTA, and AETomo-Net accord-

ing to the point cloud extracted from the TomoSAR imaging

results. The computational speed of three different algorithms

was also measured using the same personal computer. Table

1 shows the comparison result.

Table 1. Comparison of TomoSAR imaging using the tra-

ditional (F)ISTA, CV-LISTA and AETomo-Net, where accu-

racy and completeness are defined by Adist and Cdist in [9]

to measure the performance of point cloud reconstruction.

(F)ISTA CV-LISTA AETomo-Net

Accuracy 3.7649 5.0303 2.2876

Completeness 0.8137 1.6685 0.9346

Outliers (%) 9.3867% 11.3518% 1.6615%

Times hours < 1 min < 1 min

As can be seen from Table 1, the results of AETomo-Net

and (F)ISTA are much better than that of CV-LISTA in terms

of completeness and accuracy. And the result of AETomo-

Net is more accurate and has fewer outliers while having al-

most the same completeness as (F)ISTA. Meanwhile, the deep

learning methods have a very huge reduction in computing

time compared with the traditional (F)ISTA.

5. CONCLUSION

In this paper, we propose AETomo-Net to improve the perfor-

mance of TomoSAR imaging by adding multi-dimensional

features. We add a 2D feature extraction part and a 2D feature

fusion part composed entirely of convolutional layers to the

original imaging method based on deep-unfolding architec-

ture, so that the network can use more abundant features for

imaging. Experiments show that the result of AETomo-Net

is more continuous and has fewer outliers compared with

(F)ISTA and CV-LISTA. And using deep learning methods

can greatly reduce calculating time. It shows that com-

bining multi-dimensional features can improve the imaging

quality of TomoSAR effectively. The utilization of multi-

dimensional features and deep learning has great potential for

TomoSAR high-precision imaging.
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