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Abstract: Novel approaches and algorithms to estimate crop physiological processes from Earth 

Observation (EO) data are essential to develop more sustainable management practices in 

agricultural systems. Within this context, this paper presents the results of different research 

activities carried out within the ESA-MOST Dragon 4 programme. The paper encompasses two 

research avenues: (a) the retrieval of biophysical variables of crops and yield prediction; and (b) 

food security related to different crop management strategies. Concerning the retrieval of variables, 

results show that LAI, derived by radiative transfer model (RTM) inversion, when assimilated into 

a crop growth model (i.e., SAFY) provides a way to assess yields with a higher accuracy with respect 

to open loop model runs: 1.14 t·ha−1 vs 4.42 t·ha−1 RMSE for assimilation and open loop, respectively. 

Concerning food security, results show that different pathogens could be detected by remote 

sensing satellite data. A k coefficient higher than 0.84 was achieved for yellow rust, thus assuring a 

monitoring accuracy, and for the diseased samples k was higher than 0.87. Concerning permanent 

crops, neural network (NN) algorithms allow classification of the Pseudomonas syringae pathogen on 

kiwi orchards with an overall accuracy higher than 91%. 

Keywords: multispectral data analysis; satellite data assimilation; crop variables estimation; 

modeling; crop pest and disease 

 

1. Introduction 

Currently, an extraordinary amount of medium and high spatial resolution remote 

sensing data can be obtained and applied for agricultural applications when combining 

European and Chinese satellite acquisitions [1–6]. This can produce a strong impact if a 

common targeting and operational policy is applied. In both European and Asian 

continents, agricultural system monitoring activities face very similar observational 

requirements, both in terms of satellite repetition frequencies and of spectral and spatial 

resolutions. At present, decametric satellite spatial resolution is the best available option 

to map and monitor crop biophysical parameters, crop yield, crop phenology and crop 
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pests and disease in fragmented agricultural systems such as those of Southern Europe 

and China [7–9]. 

The European ESA Sentinels, the ESA Third Party Mission (TPM) and the Chinese 

satellites constellation, when used in synergy, provide a unique satellite data set that 

needs to be fully exploited for the benefit of the agricultural domain [10]. It is of great 

interest to the SINO-EU community to test new procedures and algorithms, as well as to 

improve the existing ones, to exploit the potential agronomic information that can be 

retrieved when assimilating the ensemble of the SINO-EU multi-temporal and multi-

sensor satellite data sets. 

Meanwhile, a full EO synergy between China and the EU will be envisaged for the 

community, and joint research in the framework of the ESA and Ministry of Science and 

Technology (MOST) collaborative program (http://dragon4.esa.int/, accessed on 13 April 

2021) are planned to exploit and demonstrate the contribution of SINO-UE components 

to agricultural systems. The research included activities for: (a) methodological issues 

concerning the optimal algorithms to be applied for the quantitative assessment of crop 

vegetation variables and their errors and uncertainties related to the remote sensing 

observations; and (b) the methodological aspects related to the assimilation of EO-based 

vegetation quantitative variables within crop models as well as crop models’ formulation 

errors and parameter uncertainties. 

This work aims at providing examples of the added value that a SINO-EU EO satellite 

data synergy could provide for specific agricultural variables’ retrieval and prediction. In 

this study, activities focused on common cropping systems in Italy and China for: (1) the 

estimation of variables of agronomic interest linked to the water and nitrogen cycling in 

the agro-ecosystems; (2) the improvement of the prediction of wheat yield and quality, 

both at the regional and the farm scale; and (3) the detection, recognition and mapping of 

the status related to biotic stresses for cereal crops (yellow rust and Fusarium) and 

orchards (attacked by Xylella fastidiosa or other diseases). 

To fulfill these general objectives, a research roadmap has been drawn to identify the 

steps required to exploit the collected SINO-EU data sets. 

The first step of this joint research was to retrieve crop biophysical variables, such as 

Leaf Area Index (LAI), leaf pigments both at the leaf and the canopy scales and the 

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), to understand their 

impact on a variety of agronomical applications including precision agriculture, crop 

traits monitoring and yield prediction as well as grain quality. To these aims, the team has 

co-authored a study [11] that evaluates the performance of the most recent retrieval 

algorithms, including hybrid methods as well as machine learning regression (MLR) 

algorithms exploring active learning strategies. The performance of different retrieval 

algorithms using Sentinel-2 data were tested on two test areas: Maccarese (Italy) and 

Sunshy (China). Results of study [11] showed that it is difficult to identify a single 

algorithm as the best for the retrieval of the biophysical crop variables considered in all 

cases. Nevertheless, the study showed that the estimation of the different variables was 

consistent for both the Italian and Chinese datasets. 

The second step regards the use of the retrieved biophysical variables within crop 

growth models. Crop biophysical variables and indices derived from EO optical imagery 

have been used as a proxy for other crop characteristics that cannot be directly accessed 

from EO sensors, such as crop yield. However, as highlighted in the recent review by 

Weiss et al. [10], the link between optical EO and crop yield is rather complex and 

nonlinear, due to the interactions of many agro-environmental factors such as weather, 

plant growth and development dynamics, water and nutrient balance and crop 

management. Empirical methods that link, through parametric or nonparametric 

regression, crop optical properties to crop yield show poor generalization capability and 

require additional field work for calibration and validation, especially when applied on a 

new location or crop variety. Coupling crop models, which describe processes and 

interactions within the agricultural systems using mathematical equations, with EO data, 
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which provide in-season updates of the canopy state, has been considered a winning 

strategy to obtain more accurate yield predictions [12]. Data assimilation, for example, is 

a procedure that updates a model state variable, such as for example simulated LAI, each 

time a new in-season observation, i.e., EO-derived LAI, is acquired, correcting the model 

simulation trajectories. The first assimilation tests, as part of the results obtained in the 

framework of the ESA-MOST Dragon 3 cooperation programme 

(https://dragon3.esa.int/web/dragon-3/home, accessed on April 13, 2021), were focused on 

the estimation of wheat yield, both at the field and the regional scales. The study of [11] 

assimilated LAI and canopy cover (CC) into the SAFY model [13] for the Yangling area 

(Central China) using both the Huan Jing (HJ) satellite HJ1A/B and Landsat 8 Operational 

Land Imager (OLI) imagery. In this first experiment, the retrieved LAI values were 

assimilated into the SAFY models by applying an Ensemble Kalman filter (EnKF), while 

the obtained CC values were used in the Particle Swarm Optimization (PSO) procedures 

in the Aquacrop model. The results of this study [14] showed that this assimilation 

approach could lead to an estimation error of about 20% for the yield. These results are 

also extremely dependent on models’ assimilation procedures (EnKF for SAFY and PSO 

for Aquacrop) and previous model calibration. In more recent tests, with different 

assimilation procedures, EO data proved to be useful in combination with the Aquacrop-

OS crop model, allowing for more precise estimations of crop yield as a result of the 

sensitivity analysis and calibration of Aquacrop using EO-retrieved canopy cover [15,16]. 

A further step of this research regarded the prediction of both yield and grain quality in 

protein concentration before harvest by using hyperspectral and atmospheric data in a 

hierarchical linear modelling (HLM) [17]. The authors obtained a good correlation with 

yield data by configuring the HLM with a specific spectral index and using local 

climatological data. Even though a variability has been observed at the interannual scale, 

results showed the best accuracy by using the sLAIDI spectral index (RMSE of about 1.10 

t/ha) and a grain protein content (GPC) prediction with an RMSE of 1.37%. 

The third step involves the detection, recognition, and mapping of crop diseases. 

Both European and Chinese researchers have exploited the potential of recently available 

hyperspectral remote sensing data for crop stress and diseases early detection. The 

authors of [18] investigated the potential of hyperspectral data, when combined with leaf 

textures, to recognize yellow rust (Puccinia striiformis) infection on winter wheat and 

Fusarium spp. of wheat ears [19,20]. The Chinese team has discovered that the use of six 

optimal spectral bands, in the Visible and Near Infrared (VNIR) spectral regions, 

identified by applying a continuous wavelet analysis, and 24 texture features extracted 

from a principal component analysis (PCA) provides a very good sensitivity to the yellow 

rust disease [19]. Moreover, to test their applicability to a hyperspectral data set, when 

available at the ESA or Chinese level, support vector machine (SVM) models were created. 

Concerning the Fusarium head blight in wheat, the authors have identified, using a 

Continuous Wavelet Analysis (CWA), six wavelet features with a good sensitivity to these 

diseases, five in the VNIR and one in the SWIR spectral range. As for the yellow rust, a 

detection model based on Fisher linear discriminant analysis was developed and 

preliminarily tested on unmanned aerial vehicle (UAV) imagery, with an overall accuracy 

of about 87%, in view of a possible application and upscaling to satellite data [20]. 

It is important to consider the increasing availability of hyperspectral satellite data: 

(a) Italy launched the PRecursore IperSpettrale della Missione Applicativa (PRISMA) 

Earth Observation satellite in 2019 [21]; (b) China launched the GaoFen-5 (GF-5) in 2018 

[22]; (c) Japan launched the Hyperspectral Imager Suite (HISUI) hyperspectral satellite 

sensor in 2019 [23]; (d) India launched the ISRO’s Hyperspectral Imaging Satellite (HYSIS) 

hyperspectral satellite in 2018 [24]; and (e) Germany launched the DLR Earth Sensing 

Imaging Spectrometer (DESIS) hyperspectral instrument in 2018 on board the 

International Space Station (ISS) and is planning to launch the Environmental Mapping 

and Analysis Program (EnMAP) hyperspectral satellite in 2022 [25,26]. Moreover, NASA 
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and ESA are cooperating for two new hyperspectral missions, i.e., SBG-NASA and 

CHIME-ESA [27]. 

In summary, this study intends to describe the latest results of the different research 

activities conducted within the SINO-EU programme performed between 2016 and 2020 

by the Italian and Chinese researchers on different test areas. The manuscript is structured 

so that each section deals with the retrieval of biophysical and agronomic variables and 

the agricultural pests and diseases’ monitoring and forecasting. Different test cases were 

presented, trying to provide answers to the variety of emerging user needs in the 

agricultural domain and each topic can report different test cases, which, for their 

peculiarity, can highlight the innovative research results obtained. 

2. Materials and Methods 

There were many study areas selected by the team during the Dragon 4 activities. 

The study areas, including large commercial farms as well as experimental farms, were 

distributed worldwide, even though they were primarily located in Italy and in China. 

Detailed site descriptions have been presented in different published papers [11,14–16]. 

Among the study sites, those primarily used were Maccarese (Central Italy), the Puglia 

region (South Italy), Xiaotangshan Experimental Station (Beijing area, China) and the 

Yangling area (Shaanxi Province, Central China). The experiments, for obvious logistical 

reasons, were mainly conducted by local teams, but field data and EO data were shared 

and investigated among the teams. 

The following sections describe the methods pertaining to the results obtained within 

the Dragon 4 activities. 

2.1. Retrieval of Biophysical and Agronomical Variables 

The collaborative use of SINO-EU EO data aims to advance scientific knowledge on 

the quantitative use of remote sensing information in agriculture and develop solutions 

targeted at maximizing the advantage, in this context, of combining multi-temporal and 

multi-sensor data. The activity aims to respond to the needs for developing remote 

sensing data assimilation approaches that specifically address issues originating from the 

multi-scale and multivariate nature of the data involved in the agricultural domain. In this 

context, some methodological issues concerning the assessment of errors and 

uncertainties in the remote sensing observations, in the variables that are retrieved as well 

as crop models’ formulation errors and parameter uncertainties, have been analyzed. 

2.1.1. Coupling EO Data with Crop Models for Yield Prediction 

A large commercial farm in Central Italy was selected for testing SAFY capabilities 

with data assimilation of EO imagery (Figure 1). The farm is in Maccarese (41.833 lat. N, 

12.217 long. E, 8 m a.s.l.), between Rome and the Tirrenian sea. It extends for about 3200 

ha of flat area, and grows various annual crops, including winter cereals such as barley, 

winter wheat and durum wheat. The soil in Maccarese is a Cutanic Luvisol, with a 

prevailing sandy-clay loam texture. However, based on farmer and researcher experience 

and on occasional soil sampling, heterogeneous soil conditions have been found in the 

farm, with more sandy soils in the Southern and Western part, and more clayey soils in 

the Northern and Eastern part. The area has a typical hot summer Mediterranean climate 

(Csa in Köppen classification). Long-term average annual precipitation is 812.9 mm, the 

average minimum temperature in the winter is around 5.0 °C, and the average maximum 

in the summer is around 27.4 °C. The rainiest seasons are autumn and winter, and sowing 

of winter cereals varies between October and December according to farm management 

needs and precipitation patterns. 
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Figure 1. Maccarese farm area and durum wheat fields’ locations. Durum wheat fields of the 2017–

2018 growing season were used for calibration, whereas durum wheat fields of the 2018–2019 

growing season for data assimilation. RGB Sentinel-2 images (https://scihub.copernicus.eu/ 

accessed on 13 April 2020) of 6 April 2018 and 22 March 2019 were used as a base layer for the field. 

2.1.2. Cropping Seasons and Input Variables 

The crop selected for this study was durum wheat, and two cropping seasons were 

considered for modeling purposes (2017–2018 and 2018–2019). The farm fields that were 

cultivated with durum wheat during these two seasons are shown in Figure 1. This period 

was selected since durum wheat yield was recorded by the farm staff using a combine 

harvester yield mapping system. 

Further information on crop growth was collected in the form of LAI as retrieved by 

Sentinel 2 satellite data. Sentinel 2 L2A images with a cloud cover < 20%, between 

November and June of each growing season, were downloaded and processed using the 

Sentinel Application Platform (SNAP, https://earth.esa.int/eogateway/tools/snap, 

accessed on 12 April 2021) of the ESA. Fifteen Sentinel-2 images were used for each of the 

cropping seasons, since they satisfied the above-mentioned criteria, and passed visual 

inspection performed to avoid irregular estimations over the selected fields (e.g., due to 

the shadows of scattered clouds). In 2017–2018, most of the useful images fell into the 

period of April and May, due to frequent cloud cover in winter. In 2018–2019, useful 

images were more evenly distributed. To simplify the subsequent modeling processes and 

due to the lack of spatialized information on soil properties, both LAI and yield field 

averages were considered for simulations. Raw LAI values obtained from satellite 

imagery were further processed to obtain realistic LAI curves that better supported crop 

modeling processing. The steps undertaken in this process are like those reviewed by [28]. 

The steps were as follows: 

1. A spline interpolation was used to fill the missing dates with LAI values to ensure 

continuous data throughout the entire growing season. 

2. A 4253H twice filter was used as a form of moving average to smooth LAI values. 

3. A double logistic curve was fit to provide a more realistic representation of the field-

wise LAI curves. LAI fit following [29–31] were visually inspected to select the best 

fitting method that gave the most realistic LAI curves given the satellite data 

available. The equation reported by [31] was finally selected. 
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The soil parameters requested by the model (soil water limits, as reported in the 

following section) were extracted from the maps of topsoil physical properties of ESDAC–

JRC (European Soil Data Center–Joint Research Center, https://esdac.jrc.ec.europa.eu/ 

accessed on 13 April 2021) based on the LUCAS dataset [32]. The choice was made to 

assume the absence of a priori knowledge of soil properties in the farming site. The topsoil 

properties provided by these maps were: clay, silt and sand content, bulk density and 

coarse fragment. The soil water limits were estimated from these properties using a 

pedotransfer function [33]. 

2.1.3. SAFYsw Model Calibration and Data Assimilation 

The model used for simulations was a modified version of SAFY [13]. The 

modification was originally introduced by [34] to equip SAFY with a water balance 

module based on the DSSAT approach on water uptake and water stress. The new version 

will be called hereinafter SAFYsw. The original version of SAFY is a relatively simple crop 

simulation model that leans on a radiation engine to simulate biomass accumulation, 

according to the widely used Monteith approach [35,36]. Phenology development is 

dependent on the thermal sum concept [37]. The main concepts and equations of the 

SAFYsw model are reported in Appendix A. Calibration of the model was carried out by 

trial and error considering data from the 2017–2018 cropping season. For each of the fields 

cultivated with durum wheat, fitted LAI curves were used as a reference on which to 

overlap the simulated LAI trend, adjusting phenological parameters and ELUE (Table 1). 

Calibration of yield was considered as the second step in the process, by adjusting mainly 

the Py parameter. The model calibration was carried out to obtain a more realistic range 

of model parameters, more accurate than those obtained from the literature regarding our 

location and conditions. This range was subsequently used in the first step of the data 

assimilation that was performed independently for each field following the Ensemble 

Kalman Filter (EnKF) procedure, as detailed in [38,39]. This provides an analytic solution 

to the state estimation problem, using two sources of information: simulations and 

observations. In this case, observations of the LAI state variable are assimilated into the 

SAFYsw model to reduce uncertainty and bias in model simulations. For non-linear and 

high dimensional models, to reduce the computational demand the EnKF is used, 

allowing for an easier approximate estimation of the error statistics through the Monte 

Carlo approach, replacing the covariance matrix by the sample covariance. The EnKF is 

basically a Monte Carlo implementation of the Bayesian update problem. The steps 

followed by data assimilation were: (1) initialization of the model ensemble, (2) forecast 

step, (3) observation error propagation, (4) update step, and (5) repetition of steps 2–4. 

Details on the procedures and formulas of these steps are provided in Appendix B. 

Concurrently, an “open loop” run using the average parameter values without the EnKF 

data assimilation was run. Both the model and the data assimilation were run in Matlab 

[40]. 

Table 1. List of SAFYsw parameters and values used in the simulations. 

Parameter Meaning Mean Range 1 Source 

Crop growth parameters 

εC Climatic efficiency 0.48  [13,17] 

εl Light interception coefficient 0.5  [13,17] 

SLA Specific leaf area (m2·g−1) 0.22  [13,17] 

Topt Optimum temperature for development (°C) 20  [13,17] 

Tmin Minimum temperature for development (°C) 0  [13,17] 

Tmax Maximum temperature for development (°C) 37  [13,17] 

DAM0 Initial dry aboveground biomass (g·m−2) 4.55  LAI/SLA with LAI = 0.1 [13,17] 

D0 Emergence date (day of year) 354  Varies on visual inspection of LAI curve 

ELUE Effective light use efficiency (g·MJ−1) 3.45 2.9–4.0 Calibrated 

Py Partition to grain (grain filling rate) 0.0049 0.0028–0.007 Calibrated 

Phenology parameters 
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PLa Parameter A of partition to leaf 0.121 0.067–0.175 Calibrated 

PLb Parameter B of partition to leaf 0.0025 0.002–0.003 Calibrated 

STT Growing degree days (GDD) to senescence 1225 850–1600 Calibrated 

RS Rate of senescence (GDD·day−1) 20,500 8000–33,000 Calibrated 

Soil parameters 

RootRatio Root weight to length ratio (cm·g−1) 0.98  [41] 

RtGrtRate Root growth rate (cm·GDD−1) 0.22  [41] 

MxRDP Maximum root depth (cm) 120  [41] 

Rnff Runoff factor (ratio to total rainfall) 0.15  [41] 

SALB Soil albedo 0.16  [41] 

SWCON Profile drainage coefficient (soil water conductivity) 0.90  [41] 

MxRWU Max root water uptake (cm3 water·cm−1 root) 0.0035  [41] 

SAT Saturation water content (cm3·cm−3) 0.479  Pedotransfer from ESDAC–JRC soil maps. 

Differences of values for the same soil 

water limit across fields were minimal (< 

0.03 cm3·cm−3) 

DUL Drained upper limit (cm3·cm−3) 0.240  

LL Lower limit (cm3·cm−3) 0.115  

AirDry Residual humidity (cm3·cm−3) 0.055  
1 For calibration and data assimilation. 

2.2. Crop Diseases Detection Methods 

2.2.1. Orchards Diseases Detection 

In the last few years, urgency has emerged to develop methods for monitoring 

orchards’ status, since tools capable of providing a periodic assessment on the decline of 

trees due to their diseases were unavailable. By thoroughly observing the most widely 

used land cover map in Europe, i.e., the Corine Land Cover (CLC), it was noticed that 

there was an increase in olive groves from 2012 to 2018, notwithstanding the remarkable 

reduction of thousands of hectares of area covered by olive trees in some Italian provinces 

(e.g., Lecce province) due to the Xylella fastidiosa disease 

(https://ec.europa.eu/jrc/en/science-update/monitoring-impacts-xylella-fastidiosa 

accessed on 12 July 2021). In New Zealand’s, instead, kiwifruit industry in 2010 was hit 

by Pseudomonas syringae pv. Actinidiae (Psa) [42–44] and the relative costs for this industry 

were estimated to be around USD 126 million in 2012, with an ongoing cost for the next 

15 years between USD 740 to USD 885 million [42]. 

Within this context, this study is mainly devoted to describe an approach based on 

Earth Observation satellite images and a neural network (NN) for detecting the Psa 

pathogen effects on kiwi trees. Different, and rather far, areas of interest (Figure 2) were 

considered in this analysis. The following study areas were considered: the Te Puke and 

Takaka areas in New Zealand and the Agro Pontino area in the Italian region of Lazio, 

where the climate is characterized by annual rainfall between 800 and 1000 mm per year, 

with abundant rainfall in the autumn season and an arid period between June and August. 

In 2019, the kiwi tree areas affected by Psa experienced a long cold season accompanied 

by rain, creating favorable conditions for the proliferation of this particularly aggressive 

bacterium. The virus was spreading very rapidly, creating alarm for this crop of great 

economic value: over 30% of the Italian national production is in the Lazio Region. 

The reference study areas for the Psa cases, to which NN must be applied by training, 

testing and validation, were selected in the surroundings of the Te Puke and Takaka 

regions (Figure 2). These two regions cover more than 1200 orchards’ areas with validated 

data on the infected and non-infected fields according to 2019 statistics by the Kiwifruit 

Vine Health Inc. (KWH), a leading biosecurity organization dedicated to supporting the 

New Zealand kiwifruit industry. The NN was trained in the first stage with a set of images 

for the period 2010 to 2012 considering previous research carried out [45] for the Te Puke 

region. In the second stage, the procedure followed was applied by testing and validation 

of orchards located in Takaka region (South Island), where no cases of Psa outbreaks were 

registered. 
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Figure 2. Study areas in New Zealand: Takaka region (A)-Te Puke region (B), and in Italy: Cisterna di Latina (C). 

Psa was detected in New Zealand for the first time in November 2010, in several 

kiwifruit orchards of the North Island, i.e., 92 orchards, mainly in the regions of Hawke’s 

Bay and Bay of Plenty. Disease spread continued during the first semester of 2011 (170 

orchards affected) across a wide area (Te Puke, Bay of Plenty, Matapihi) [46]. 

For our analysis, a total of 50 RapidEye satellite images (five spectral channels in the 

VNIR spectral range) were processed for the period March 2010-October 2012 and July-

October 2019, to cover different validated outbreaks and phenology stages of the fields of 

interest. RapidEye Level 3A images (radiometrically and geometrically corrected) have 

the following characteristics: five bands (blue, green, red, red edge, near-infrared) with 5 

m of spatial resolution. 

The following vegetation indices (VI) were applied to the RapidEye data set: Simple 

ratio (SR), the Normalized difference vegetative index (NDVI), Green NDVI (G-NDVI), 

Red-edge NDVI (ReNDVI), Modified red-edge NDVI (MRe-NDVI), Enhanced vegetative 

index (EVI), Enhanced vegetative index 2 (EVI2), Photosynthetic vigor ratio (PVR), Green 

chlorophyll index (GCI), Red-edge chlorophyll index (ReCI), Triangular vegetative index 

(TVI), and the MERIS terrestrial chlorophyll index (MTCI). 

Additional indexes were applied to Sentinel-2 images, taking advantage of the 13 

spectral channels in the VSWIR spectral range. The new set of vegetation indices includes: 

Leaf Chlorophyll Index (LCI), Tasseled Cap-Green Vegetation Index (TCGVI), Green 

atmospherically resistant vegetation index (GARVI), Structure Intensive Pigment Index 1 

(SIPI1), Structure Intensive Pigment Index 2 (SIPI2), Modified Chlorophyll Absorption in 

Reflectance Index (modCARI), Atmospheric Resistant Vegetation Index (ARVI), and the 

Optimized Soil Adjusted Vegetation Index (OSAVI). 

Finally, the use of PRISMA hyperspectral satellite data (having 30 m spatial 

resolution) allowed the definition of a larger set of indices peculiar to an hyperspectral 

imagery: NDRE, modNDRE, PSSR-1, PSSR-2, PSND-1, PSND-2, PSRI, CARI, CRI-1, CRI-

2, NDLI, MDNI, RVSI, NDVI-750, mNDVI-750, VOG-1, VOG-2, GM-1, GM-2, LIC-1, and 

MTVI-2. The list and details of all indices can be found at 

https://www.indexdatabase.de/db/i.php?offset=1 (accessed on 15 May 2020). 

Moreover, for this study, 400 fields were digitized through visual interpretation 

(Figure 3A) from the Te Puke area, setting randomly selected sub-samples of 60% of the 

fields for training, 20% for validation, and 20% for testing the network. The Levenberg-

Marquardt back-propagation function was used for the training process, and the error 

estimation was computed by minimum squares. 
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Figure 3. Infected and not-infected digitalized blocks in the Te Puke region (A) and in the Takaka 

region (New Zealand) (B). 

In the second phase of the study, an additional 250 blocks located in the Takaka 

region were included (Figure 3B), using the same subset percentages of blocks for training, 

validation, and testing as in the Te Puke region. 

As it was described in the statistics provided by KVH (Kiwifruit Vine Health Inc.) for 

December 2019, in the Te Puke region 99% of the orchards had been identified to be 

affected by Psa, while in the South Island (where the Takaka area is located), no cases of 

Psa were detected. Therefore, this dataset provided potentially good samples for training 

and validation of the NNs. The VIs extracted from RapidEye and Sentinel-2 images were 

fed into the NNs, taking into account the list of indices processed in the previous analysis 

for the period 2010–2012, i.e., SR, NDVI, G-NDVI, ReNDVI, MReNDVI, EVI, EVI2, PVR, 

GCI, ReCI, TVI, and MTCI, which can be summarized by their statistics (Minimum, 

Maximum, Mean, and Standard Deviation). 

To improve the performance, an additional set of VIs were added to the previous 

ones extracted from Sentinel-2 images. The new set of vegetation indices included in the 

input to the NN were: LCI, TCGVI, GARVI, SIPI1, SIPI2, MCARI, ARVI and OSAVI. 

The second study area is in Central Italy (Figure 2C) in the zone of Lazio Region of 

Agro Pontino, where around 10,000 hectares of kiwifruit (source: Confagricoltura, 

https://www.confagricoltura.it/ita/ accessed on 13 July 2021) are present. It is worth 

mentioning that in 2018, New Zealand and Italy were the key exporters of kiwifruit, 

totaling nearly 29% and 20% of total exports, respectively [47]. 

2.2.2. Wheat Yellow Rust Detection 

To develop efficient wheat yellow rust monitoring models, some field experiments 

were carried out to acquire remote sensing observation and field survey data of wheat 

yellow rust (Puccinia striiformis f.sp. tritici), which is one of the three major wheat rust 

diseases. 

At the leaf scale, a series of in situ observations were conducted at the Scientific 

Research and Experimental Station of Chinese Academy of Agricultural Science 

(39°30′40” N, 116°36′20” E) in Langfang, Hebei province, China. The images with spectral 

information of wheat leaves (Figure 4a) were obtained by using a visible and near-infrared 

(VNIR) hyperspectral imager (Headwall VNIR imagining sensor, Headwall Photonics, 

Inc., Bolton, MA, USA). The wavelet features that have significant correlation with the 

severity of wheat yellow rust were extracted, and two monitoring models utilizing linear 

discriminant analysis (WRSF-LDA) and support vector machine (WRSF-SVM), 

respectively, were developed using the wavelet features as input (Figure 4b). 
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Figure 4. Acquisition of hyperspectral images of leaves (a) and the method and result of wheat yellow rust identification 

(b). 

At the canopy scale, the field experiment was designed to acquire hyperspectral UAV 

images in the development of yellow rust. The experiment was also conducted at the 

Scientific Research and Experimental Station of Chinese Academy of Agricultural Science. 

The UAV used in the experiment was an M600 Pro aircraft of Daijang Innovations (DJI), 

and a Cubert S185 FireflEYE SE hyperspectral imaging camera was used (Figure 5a). 

Based on UAV hyperspectral images and field survey data, wavelet features and 

vegetation indices which were sensitive to yellow rust were extracted (Figure 5b). A kernel 

principal component analysis-based support vector machine model (KPCA-SVM) was 

proposed to monitor yellow rust by using the above features and indices. This model used 

kernel function to transform the original nonlinear feature space into a linearly separable 

space, and then find the occurrence area of wheat yellow rust. 

 

Figure 5. Acquisition of UAV hyperspectral images (a), and extraction of wavelet features and results of wheat yellow rust 

monitoring (b). 
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At the regional scale, satellite image data, meteorological data and field survey data 

were integrated to analyze the relationship between wheat yellow rust and the 

environment or the host, and then to develop a model for wheat yellow rust monitoring. 

For this study a satellite-ground synchronous field experiment was carried out in 

Ningqiang, Shaanxi province, China (Figure 6). The LAI and leaf chlorophyll content 

(LCC) of wheat infected by wheat yellow rust were measured using a LAI-2200 (Li-Cor 

Biosciences Inc., Lincoln, NE, USA) and a Dualex (FORCE-A, Inc., Orsay, France). The 

severity of wheat yellow rust of field samples was calculated based on the rules for 

monitoring and forecasting wheat yellow rust suggested by the National Plant Protection 

Department of China (Chinese Standard: GBT 15795-2011). Based on the experimental 

data and Sentinel-2 images acquired at the same time with the experiment, a wheat yellow 

rust monitoring model using fast Fourier transform technology was proposed. This model 

achieved accurate monitoring of wheat yellow rust through expressing the relationship 

between LAI and LCC and the severity of yellow rust. 

 

Figure 6. A false color map of the research area and survey area of Ningqiang, Shaanxi Province; 

the wheat planting area is shown in green, and the sampling points are marked yellow. 

3. Results 

3.1. Coupling EO Data with Crop Models for Yield Prediction 

The activity aims to test the performances of the EO data assimilation into biophysical 

crop models to improve durum wheat predictions. 

The growing season of 2017–2018 in Maccarese (Italy) was used for calibration, 

obtaining a range of parameter values that represent a more realistic range for subsequent 

simulations. The following year (2018–2019) was used to test the efficiency of data 

assimilation on several wheat fields. EO imagery collected during the durum wheat 

growing season was aggregated by field, preprocessed, and used for data assimilation. 

For each field, the fitted LAI was assimilated into SAFY using EnKF, and a “standard” 

simulation without LAI assimilation (open loop) was also run (Figure 7). In addition to 

visual comparison of LAI trends, performance metrics were also calculated on yield (Table 

2). LAI curves show a clear distinction between standard and EnKF simulations. The 

standard simulations of the five fields with wheat emerging in the first half of December 

(Figure 7a–e) generated almost identical LAI curves and, in turn, similar yield predictions. 

Indeed, initial conditions and meteorological forcing during the growing season were 

common to all the fields, and soil water limits were similar due to the homogeneity and 

low resolution of the ESDAC-JRC soil maps with respect to the farm dimensions. This 

resulted in similar simulations when EnKF was not used (open loop). In the other two 

fields (Figure 7f,g), durum wheat was sown and harvested earlier, and this was reflected 

by the LAI development. In all the cases, however, the EnKF procedure simulated LAI 

following almost exactly the curves fitted on Sentinel-2 data. This permitted adjusting the 

simulation trajectory daily, obtaining not only a better representation of LAI, but also a 
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more realistic quantification of in-season biomass and yield growth. In fact, the validation 

on yield at the field level showed a three-fold improvement in yield estimations when 

EnKF was used, with respect to the standard simulation (Table 2). 

 

Figure 7. Data assimilation of LAI retrieved from Sentinel 2 into SAFYsw model. For each durum wheat field (a–g), the 

graphs represent the LAI curve fitted on Sentinel-2, the LAI simulated without data assimilation (open loop) and the LAI 

simulated with data assimilation (see legend in panel h)). EO-derived LAI curves and LAI curves simulated with data 

assimilation overlaps. 
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Table 2. Performance metrics of yield estimations for 2019 with and without data assimilation. 

RMSE (root mean square error) and MAE (mean absolute value) are in tons per hectare, RRMSE 

(relative RMSE) is in percentage. Metrics are obtained by comparing predicted and observed yield 

for each field. 

Simulation RMSE t·ha−1 RRMSE % MAE % 

With data assimilation 1.42 31.7 1.14 

Open loop 4.42 97.3 3.97 

The improvement in the simulation performances with data assimilation is testified 

by the lower discrepancies between predicted yield and yield measured by the combine 

harvester (lower RMSE, RRMSE and MAE). The data assimilation results are comparable 

to those of [13] for common wheat at the field scale in China. The authors obtained, over 

three years of experiments, an average RMSE of 1.1 t·ha−1. Their RRMSE (18%) was lower 

than in our case, however, probably due to a narrower range of the observed yield, 

approximately from 3 to 8 t·ha−1. In our case, durum wheat yield ranged from about 1 

t·ha−1 to more than 8 t·ha−1. 

The yield of the two fields with a shorter growing cycle (Figure 7f, 7g) was 

overestimated, probably due to the rather poor yield (1.1 and 1.4 t·ha−1), which is more 

difficult to simulate for a relatively simple model such as SAFY due to the involvement of 

various sources of stress (Figure 8). Crop models in general, including SAFY, are reported 

to perform poorly when yield is greatly limited by severe stress [48]. Lower yields can 

result from limitations that are rarely simulated by this kind of dynamic crop model, such 

as weeds, pests and diseases [49,50]. In another field the model showed poor performance 

despite the assimilation, simulating 2.7 t·ha−1 of grain yield with respect to the 5.7 t·ha−1 

measured at harvest (Figure 7). The field was the largest, and showed a slow and uneven 

wheat growth that may not have been adequately caught with the use of a single LAI 

curve for the entire field. 

Figure 8. Simulated yield (with data assimilation) vs. observed yield. 

3.2. Crop Diseases Results 

3.2.1. Orchards Diseases Mapping 

Having in mind the objective of assessing the possibility of monitoring the spread of 

diseases, Psa in this case, in permanent crops such as kiwi trees, by using EO satellite 

images, we focused on the analysis of RapidEye images to validate the results presented 

in [17]. In that work, multiple vegetation indices were generated and a binomial logistic 

regression was used to relate these vegetation indices to the presence of Psa. Psa data used 

in [17] were provided with some uncertainty about the actual infection date. In the present 
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study, the data were reclassified, and the analysis was confined to KBIs (Kiwi Blocks 

identified by KVH) with either an ‘early’ (infected) or ‘control’ (non-infected) response. 

Taylor et al. [45] identified potential relationships between Psa infection and canopy 

vigour retrieved by remotely sensed imagery. However, they recognized that there were 

limitations in their study, particularly about the resolution at which the infection data was 

collected (orchard level rather than maturity level). 

Initially, the study was carried out using RapidEye images, and an approach similar 

(in terms of VIs and NN) to the one used to study the New Zealand’s regions was adopted. 

Subsequently, we further investigated Sentinel-2 and PRISMA imagery by applying the 

above mentioned Vis. 

Concerning the analysis carried out on the regions of New Zealand based on the 

RapidEye imagery of 2010 and 2012, the confusion matrix (Table 3) obtained by applying 

the NN shows an acceptable percentage of good classifications (AO higher than 69%). 

Table 3. Confusion matrix results from the application of the NN classification on RapidEye VI. 

 Training Confusion Matrix Validation Confusion Matrix 

Output class 1 36.3% 3.8% 90.6% 25.0% 8.8% 74.1% 

Output class 2 5.4% 54.6% 91.0% 
5 

6.3% 

48 

60.0% 
90.6% 

 87.0% 93.6% 85.0% 80.0% 87.3% 85.0% 

 
Target class 

1 
Target class 2 AO Target class 1 Target class 2 AO 

 Test Confusion Matrix All Confusion Matrix 

Output class 1 22.5% 10.0% 69.2% 31.3% 6.0% 83.9% 

Output class 2 5.0% 62.5% 92.6% 5.5% 57.3% 91.2% 

 81.8% 86.2% 85.0% 85.0% 90.5% 88.5% 

 
Target class 

1 
Target class 2 AO Target class 1 Target class 2 AO 

A way to measure how well the NN fits data is the receiver operating characteristic 

(ROC) plot. Figure 9 shows the relationship of false positive and true positive rates as the 

thresholding of outputs is varied from 0 to 1. The ROC curve shows the true positive rate 

versus false positive rate (equivalently, sensitivity versus 1–specificity) for different 

thresholds of the classifier output. 
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Figure 9. ROC Curves showing the performance of the classificatory when applied to RapidEye 

images. Class 1 indicates infected blocks, while class 2 indicates blocks where the pest has not been 

detected. 

The results obtained from the second analysis, which included the same list of VIs 

applied previously, now extracted from Sentinel-2 images (Table 4), were obtained 

considering the health status of the orchards published by the biosecurity organization 

KVH in 2019. These results showed an improvement in the performance, highlighting the 

potential use of Sentinel-2 datasets for the detection of Psa outbreaks. 

The datasets ingested into the NN included the statistics for each VI (as Maximum, 

Minimum, Mean and Standard deviation), for each block (or maturity area). After the 

addition of 250 blocks from Takaka region to the previously digitized 400 blocks from the 

Te Puke area, the classification performance improved, increasing the accuracy up to 95%. 

Table 4. Confusion matrix result from the application of the NN classification procedure with the 

new dataset. 

 Training Confusion Matrix Validation Confusion Matrix 

Output class 1 59.5% 5.4% 91.7% 61.5% 5.4% 92.0% 

Output class 2 2.1% 33.1% 94.2% 5.4% 27.7% 83.7% 

 96.7% 86.0% 92.6% 92.0% 83.7% 89.2% 

 Target class 1 
Target class 

2 
OA 

Target class 

1 

Target class 

2 
OA 

 Test Confusion Matrix All Confusion Matrix 

Output class 1 52.3% 2.3% 95.8% 31.3% 6.0% 83.9% 

Output class 2 3.8% 41.5% 91.5% 5.5% 57.3% 91.2% 

 93.2% 94.7% 93.8% 85.0% 90.5% 88.5% 

 Target class 1 
Target class 

2 
OA 

Target class 

1 

Target class 

2 
OA 

The study on the New Zealand sites also included PRISMA hyperspectral imagery, 

which allowed adding a new set of VIs. The analysis was carried out on archived images 

of the areas that in 2019 were clearly identified as infected (Te Puke) and non-infected 
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(South Island). A similar analysis, ongoing, aims at including a new set of PRISMA 

images, collected monthly, to assess the possibility for identifying the potential outbreaks 

at different phenological stages in the Agro Pontino region in Central Italy. 

To improve the performance of the NN, a new set of VIs based on hyperspectral 

imagery was added. The NN was designed with similar characteristics to the previous 

analysis (20 hidden layers, 60% training, 20% validation, and 20% testing). In this case, the 

performance of the classifier was significantly improved, reaching values greater than 

95% (Tables 5 and 6). 

Table 5. Performance of the classifier with the new set of VIs. 

 Training Confusion Matrix Validation Confusion Matrix 

Output class 

1 
58.5% 5.4% 95.8% 63.1% 1.5% 97.6% 

Output class 

2 
2.3% 36.7% 94.1% 0.0% 35.4% 100% 

 96.2% 93.5% 95.1% 100.0% 95.8% 98.5% 

 Target class 1 Target class 2 OA Target class 1 Target class 2 OA 

 Test Confusion Matrix All Confusion Matrix 

Output class 

1 
60.0% 3.1% 95.1% 59.7% 2.5% 96.0% 

Output class 

2 
2.3% 34.6% 93.8% 1.8% 36.0% 95.1% 

 96.3% 91.8% 94.6% 97.0% 93.6% 95.7% 

 Target class 1 Target class 2 OA Target class 1 Target class 2 OA 

Table 6. Comparison between confusion matrices. 

 
Confusion Matrix with 12 Initial 

VIs 

Confusion Matrix with Extended List 

of VIs 

Output class 1 58.5% 4.8% 59.7% 2.5% 

Output class 2 3.1% 33.7% 1.8% 36.0% 

 Target class 1 Target class 2 Target class 1 Target class 2 

The same NN, trained using the data on New-Zealand, was saved and applied to the 

area devoted to the cultivation of kiwi located in the Lazio Region of Italy, where the 

presence of this pest was already detected. 

The NN was then fed with VIs extracted using the Rapideye images of the Agro 

Pontino. It can be noticed that certain blocks (or maturity areas) show similar responses 

and were classified under different levels of probability of infection (Figure 10). 

Nevertheless, it is important to underline that the NN was trained considering only 

the presence of Psa (Pseudomonas syringae pv. Actinidiae) epidemics which have caused 

major economic losses to kiwifruit industry since 2007–2008, while, more recently, the 

Halyomorpha halys, also known as the brown marmorated stink bug, has seriously 

compromised fruit quality and marketable yields [46]). 

For the test cases located in Italy, it could not be concluded that Psa was present in 

the fields, for which no ground data were available, but orchards showed a similar 

behavior to the fields of other regions which were identified as infected by Psa. Therefore, 

in the Agro Pontino case study, further field campaigns have to be carried out for valida-

tion purpose. This would help to improve the robustness of the current NN. 
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Figure 10. Results of the application of the trained NN on kiwi fields in Italy. The legend shows the 

probability of a field infection (in this case, representing similar behavior as those fields validated 

in other regions of interest). 

Despite the promising results as shown in Table 7, the performance of the NN for 

this case study could also be related to different phenology states of the orchards. Thus, a 

new analysis with new image acquisitions was programmed for the incoming seasons to 

validate and confirm these results. 

Table 7. Results obtained from the application of the neural network, trained with VIs computed on 

PRISMA images, on the two regions in New Zealand. As in the previous cases, the characteristics of 

the neural network included 60% of the samples for training, 20% for validation, and 20% for testing, 

with 20 hidden neurons. 

 Confusion Matrix with 12 Initial VIs 

Output class 1 58.5% 4.8% 92.5% 

Output class 2 3.1% 33.7% 91.6% 

 95% 87.6% 92.2% 

 Confusion Matrix with Extended List of VIs 

Output class 1 59.7% 2.5% 96.0% 

Output class 2 1.6% 36.0% 95.1% 

 97% 93.6% 95.7% 

 Target class 1 Target class 2 OA 

It can be concluded that the methodology described above can be applied for the 

monitoring of kiwifruit anomalies, considering the availability of satellite images with the 

required spectral, radiometric and spatial resolution. However, the results cannot be 

directly applied to any kind of orchard, as further detailed in the Discussion section. 

Concerning the use of hyperspectral images, it needs to be noted that, for performing 

this test, the images were collected in dates different from those of the RapidEye and 

Sentinel-2 images and, also, with a smaller number of fields, due to the limited time span 

of the archived PRISMA images, and the limited coverage of the areas of interest. 

Therefore, with the limitation recalled above, the result, not obvious because satellite 

images of different spatial resolution (in the range of 5 m to 30 m) and number of spectral 

channels were used, is that, in this case, in the range of spatial resolution from 5 m to 30 

m, higher spectral information provides better results. 
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3.2.2. Wheat Yellow Rust Mapping 

A primary aim of the research, taking wheat yellow rust as an example, was to use 

remote sensing technology to achieve accurate monitoring of crop diseases at different 

scales, thus providing a reference for the application of remote sensing technology in crop 

disease monitoring and forecasting. We have analyzed the pathogenesis and 

epidemiological process of wheat yellow rust and have developed a feature extraction 

method that is consistent with the pathological characteristics and epidemiological 

mechanism of this disease. Starting from the characteristics of the impact of wheat yellow 

rust on the physiological and biochemical indicators of wheat, parameters such as 

vegetation index and wavelet features were extracted, and the data characteristics at 

different scales were considered to construct monitoring models applicable to different 

scales. 

At the leaf scale, a monitoring model based on wavelet features extracted from non-

imaging hyperspectral data was developed. It was found that the wavelet features with 

strong correlation with disease severity were mainly distributed in the 480 nm–750 nm 

range. When the proportion of yellow rust spores in the leaf was small (4% to 19%), the 

average monitoring accuracy of the model was 70.1%. With the increase of yellow rust 

infestation time and area of yellow rust spores in the leaf, the spectrum of the leaf changed 

significantly, therefore providing more valuable information for disease monitoring and 

rapidly improving the monitoring accuracy of the model. The average monitoring 

accuracy of model was 86.3% when the proportion of yellow rust spore in the leaf was 

more than 40%. Table 8 shows the change in the average monitoring accuracy of the model 

after yellow rust infestation. 

Table 8. Changes in average monitoring accuracy of yellow rust monitoring model after infestation, 

expressed in days after infection (DAI). 

Feature Class 
Classification Accuracy (%) 

7 DAI 14 DAI 21 DAI 28 DAI 31 DAI 34 DAI 41 DAI 

WRSFs 
Healthy 73.5 81.2 88.6 95.4 96.9 95.2 96.1 

Infected 80.5 84.8 79.8 92.7 98.2 98.4 98.5 

At the canopy scale, wavelet features and vegetation indices with high correlations 

with disease severity were extracted using UAV hyperspectral images, and then applied 

to construct the disease monitoring model. The results of the analysis showed that the 

monitoring accuracy of the applied model tended to increase, and then decrease, as the 

development of yellow rust progressed. The monitoring accuracy (Table 9) ranged from 

88.7% to 99.2% for healthy samples and 84.2% to 100% for diseased samples. The highest 

monitoring accuracy of the model was achieved for 31 days after the infection, with 99.2% 

and 100% of identification accuracy for healthy and diseased samples, respectively. The 

results of this study showed that accurate monitoring of wheat yellow rust at the canopy 

scale can be achieved using UAV hyperspectral imagery. 

Table 9. Monitoring accuracy of KPCA-SVM based on UAV hyperspectral imagery, at different 

days after infection (DAI). 

Model State 
Classification Accuracy/% 

7 DAI 14 DAI 21 DAI 28 DAI 31 DAI 34 DAI 41 DAI 

KPCA-

SVM 

Healthy 88.7 92.4 97.5 99.2 98.8 96.7 98.9 

Infected 84.2 90.1 95.3 97.9 100 100 98.2 

At the regional scale, spectral indices sensitive to LAI and LCC were constructed 

based on disease-sensitive spectral bands at the leaf and canopy scale, and then the yellow 

rust monitoring model KPCA-SVM was developed. The monitoring results are shown in 
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Figure 11. The model monitoring results were generally consistent with our field survey. 

Wheat yellow rust mainly occurred around the Jialing River in Ningqiang county, an area 

that provides ideal environmental conditions for the infection and development of yellow 

rust. Table 10 gives the confusion matrix and kappa value corresponding to the 

monitoring results. It can be found that the overall accuracy of the monitoring model is 

84.4% and the kappa coefficient is 0.742, thus achieving accurate monitoring of yellow 

rust. 

 

Figure 11. Monitoring and mapping of yellow rust and ground truth maps in Ningqiang County, 

Shaanxi Province (China). The window shows an enlarged view of the stripe rust distribution in the 

sub-area. 

Table 10. Confusion matrix and kappa value for the monitoring results based on KPCA-SVM of the 

yellow rust in Ningqiang county (China). 

 
Healthy  

Wheat 

Yellow 

Rust 

User’s  

Accuracy (%) 

Overall  

Accuracy (%) 

Kappa 

Coefficien

t 

Healthy wheat 16 4 80 

84.6 0.742 Yellow rust 2 17 89.5 

Producer’s accuracy (%) 88.9 81  

These results suggest that remote sensing monitoring of wheat yellow rust at leaf, 

canopy and regional scales is feasible. When developing the monitoring model, 

information on the spatial and temporal variation of spectral features is the basis for small-

scale disease monitoring. As the monitoring scale rises, crop growth and environmental 

information needs to be added into the spectral feature set to achieve more accurate 

disease monitoring. The results show that there is consistency in the sensitive spectral 

bands of diseases at the leaf scale and canopy scale, and the regional scale disease 

monitoring model developed based on the sensitive spectral bands also achieved accurate 
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monitoring. The disease monitoring methods and results presented in this section can 

provide a reference for subsequent research of remote sensing monitoring of crop pests 

and diseases. 

4. Discussion 

Joining EO data and crop models through data assimilation proved to be an efficient 

approach to predict durum wheat yield. The results obtained at the Maccarese site 

provided three take home messages that are worth mentioning, considering the state of 

the art of EO studies and of previous works on similar topics. Firstly, yield was predicted 

by exploiting both EO data and crop models. Both methods have strength and 

weaknesses, but data assimilation is an efficient tool to get the best of both worlds [10]. 

Using optical EO data only has a limited applicability for the prediction of crop yield, 

since yield is an indirect property that, contrarily to canopy properties such as LAI, cannot 

usually be estimated solely by EO retrieval [10]. Conversely, process-based crop models 

can simulate complex processes of plant growth and development (and yield formation) 

by using well-established scientific concepts in the form of mathematical equations, but 

require some adjustment to real field measurements to obtain reliable results. A process-

based approach of dynamic crop models can integrate the EO data with functions for the 

estimation of crop growth and yield that have general validity [50,51]. Secondly, the 

combination of models and EO-retrieved LAI permitted the prediction of yield without 

requiring field work. The only information collected in the field was durum wheat yield, 

measured by the combine harvester. Extensive field data would have been required for 

calibration either with empirical methods based on regression to directly estimate yield 

from EO data [10], or with a crop model (such as SAFY) used without data assimilation 

[38]. Data assimilation permitted avoiding field work and at the same time reduced 

uncertainties in the simulations. Thirdly, so far SAFY has been used with data assimilation 

mostly for regional scale yield estimations [11,15], but the experiment at Maccarese 

allowed for testing the performances of this method at the field scale. This highlighted 

that yield can be satisfactorily predicted at the field level, especially in an agricultural 

context such as the Italian one, where field dimensions are often of few hectares and 

simulations can be carried out at the field level. This first step in this direction opens the 

door for potential applications of the EO–model combination to plan crop management at 

the field or within-field scale and adjust it with in-season information. Several approaches 

can be used to exploit EO data to identify homogeneous management zones in crop fields 

[52], and crop models can be applied to these zones to plan agronomic management 

practices and adjust them during the season when new information is available, for 

example by applying variable rates of N based on the productive potential of each zone 

[53]. Coupling EO data with modeling approaches can also be used for in-season 

adjustments of irrigation plans of variable rate irrigation management zones [54]. All these 

applications primarily require accurate crop growth and development estimates that need 

little or no field work and that can be adjusted during the season when new EO data 

become available [55]. 

The mapping of potential anomalies on agricultural crops (i.e., winter wheat and 

maize), orchards and particular trees from a worldwide perspective is technically feasible 

thanks to the present generation and availability of EO based products that can 

systematically cover large areas of interest. Remote sensing images are widely used to 

study vegetation status, and can be a real aid in monitoring activities, especially to support 

localized field surveys. Non-invasive methods carried out with the assistance of remote 

sensing technologies can be fully exploited to assess the current situation of entire regions 

of interest, evidencing areas under potential risks, and also under different climate change 

contexts. The mapping of diseased crops based on automatic analysis of remote sensing 

data could be a valuable support for in situ investigation planning. In fact, the model 

shown in Section 2.2.2 achieved accurate monitoring of wheat yellow rust, by exploiting 

the relationship between LAI and LCC and the severity of yellow rust. Such a model, 
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based on proximal sensing hyperspectral data, aims at defining a possible procedure for 

detecting crop pests and diseases to be applied to hyperspectral satellite images, for which 

atmospheric and spatial resolution effects should be considered. Satellite imagery allows 

covering a large area of interest at an affordable cost. 

The example for the application of remotely sensed images, at different spatial and 

spectral resolution, for detecting the presence of the Psa disease in kiwifruit trees shows 

that the accuracy of the classification is mainly depending on the spectral channels rather 

than on the spatial resolution. In fact, the best results, shown in Table 7, are obtained by 

using PRISMA hyperspectral images which have 30 m spatial resolution. Of course, the 

spatial resolution should be compatible with the size of the orchards’ field, that is, the 

spatial resolution of the satellite images exploited here spans from 5 m to 30 m. Further, it 

should be underlined that the good results obtained by applying a NN based on statistical 

parameters extracted by vegetation indices could be due to the distribution of kiwi trees. 

In fact, kiwifruit vines are organized to form a pergola that provides a single plane canopy; 

therefore, the monitoring is only minimally affected by the characteristics of soil or the 

presence of grass on the surface around the trees. As matter of the fact, an approach based 

on NDVI was applied to detect the presence of olive groves affected by Kf [21]. In that 

case, the selection of the images for carrying out the analysis would have considered the 

background grass phenology because, in that case, trees are distributed roughly 6 m apart, 

so that surface cover is visible and can affect the NDVI estimate. This research topic is 

currently actively growing, achieving new and promising results, in line with climate 

change scenarios which predict a higher incidence of plant pathogens. In this continuous 

changing context, further developments should be considered to act timely and prevent 

the spread of emerging pests. Plant diseases’ epidemiology is affected by three factors (the 

disease triangle): the host plant, the pathogen and the vector, all influenced by 

environmental conditions. Therefore, further studies are focusing on the vectors and their 

dynamics, the environmental conditions for their growth and on the detection of the 

weather patterns that could leverage the development and diffusion of pest outbreaks. 

Crop disease monitoring from Earth Observation is an important topic in the 

development of precision agriculture. This paper presents remote sensing monitoring 

methods and results for wheat yellow rust at multiple scales. Monitoring accuracy 

appeared first to increase, and then to decrease, with the progression and spread of the 

disease. The improvement of monitoring accuracy was mainly due to the increase in the 

proportion of yellow rust spores in the leaf, which provide more spectral change 

information and can enhance the model’s ability to identify the disease. The subsequent 

decrease in monitoring accuracy may be due to the natural wilting process of leaves brings 

noise to the spectral features of the disease, and thus reduces the ability of the model to 

identify yellow rust. This phenomenon indicates that there is an optimal time for disease 

monitoring. In a disease control process, the appropriate time should be selected for 

disease monitoring based on the physiological characteristics of the disease. In terms of 

the sensitive bands of the disease, there is consistency at the leaf scale and canopy scale, 

and the disease monitoring model developed based on the sensitive bands has good 

performance in the monitoring of yellow rust when using Sentinel-2 images. These results 

indicate that the bands more sensitive to the disease, identified at the leaf scale on the 

ground, can be transferred to large scale disease monitoring. However, since the pixels of 

satellite images contain complex information, regional-scale disease monitoring should 

combine spectral information with meteorological and environmental information to 

develop a more comprehensive monitoring model. 

5. Conclusions 

Agriculture is one of the major domains in which EO data can be successfully applied 

in a diversity of agronomical applications, e.g., to optimize the use of chemicals and 

fertilizer, to foster optimal agronomical practices, and to increase yield and quality 

production. This domain is a common research issue for both EU and Chinese researchers, 
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since it is formed by an ensemble of operational needs connected to food security and also 

related to production, prediction and crop diseases, which can affect worldwide food 

availability. The methodologies, resources and tools applied in the current study, 

moreover, aim at answering to some of the requirements declared by the European Food 

Safety Authority [56] concerning the identification of areas of high disease risk where to 

target the surveys, and the development of detection methodologies and reporting 

procedures to derive the potential for early detection and monitoring of new outbreaks. 

This manuscript aims to summarize the effort performed by the SINO-EU research 

Team, in the framework of the ESA Dragon4 initiative successfully concluded in 2020, for 

a full exploitation of the Chinese-European EO resources in relation to agricultural 

applications suitable for both local and regional scales. Most of our effort was addressed 

to the analysis of the EO data to retrieve, with a suitable accuracy, biophysical and 

biochemical variables related to crop functioning and photosynthesis. 

Results show that wheat yield was predicted with a lower RMSE with respect to the 

standard simulation (e.g., 1.42 t·ha−1 instead of 4.42 t·ha−1) by applying the EnkF 

assimilation procedure into the SAFY crop model to assimilate LAI values. Regarding the 

detection of orchards’ pathogens, an overall accuracy higher than 95% was achieved by 

training a NN algorithm. Concerning wheat yellow rust detection, an overall classification 

accuracy of 89.3% was obtained when applying a WRSF-SVM classification procedure. 

The research studies performed by the SINO-EU teams still require further steps to 

minimize the discrepancies between models and data sources when applied at different 

scales, having also in mind the specificity of the different environments pertaining to EU 

and China. These studies will constitute a heritage to the ongoing activities in the Dragon-

5 program initiative. In this framework, further studies will be addressed to: 

(a) Expand the estimation of new variables, by exploring the RTM code PROSPECT-PRO 

(e. g., for proteins and nitrogen); 

(b) Exploit the newly operative hyperspectral missions for their application on a regional 

base to detect pathogens; 

(c) The implementation of machine/deep learning techniques for the generalization of 

the pre-operative chains applicable to the local scale for agricultural applications. 

Further studies will be devoted to exploiting the newly available high spectral 

resolution satellite data, such as those coming from GF5, PRISMA, EnMAP and, in the 

future, from SBG and CHIME hyperspectral missions. 
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Appendix A. Simple Algorithm for Yield Estimates (SAFY) 

In SAFYsw, biomass accumulation depends on the amount of Photosynthetically 

Active Radiation (PAR) that is absorbed by the canopy, following Equation (A1): 

∆DAM = Rg·εC·εl·ELUE·FT(Ta)·Ks, (A1)

where Rg is the solar radiation, εC is the climatic efficiency, εl is the light efficiency, ELUE 

the effective light use efficiency, which also accounts for stresses not considered in the 

other crop modules, and FT is the temperature stress. Ks is the water stress coefficient (an 

addition of the SAFYsw version of the model), which acts as a modifier of the biomass 

accumulation. Ks is derived from the actual transpiration to potential transpiration ratio, 

which are calculated in the water balance module, as specified below. Daily LAI 

expansion is calculated from the daily accumulated biomass until senescence as in 

Equation (A2): 

∆GLAI+ = ∆DAM·PL(∑Ta)·SLA, (A2)

where ∆GLAI+ is the LAI expansion, PL(∑Ta) is a partition-to-leaf function calculated 

from the thermal sum and two partition parameters (PLa and PLb), and SLA is the specific 

leaf area. After reaching a thermal sum threshold defined by the senescence parameter 

STT, the LAI starts decreasing following Equation (A3): 

∆GLAI- = GLAI·(∑Ta-STT)/Rs, (A3)

where Rs is the canopy senescence rate. When canopy expansion ends, grain starts 

accumulating depending on the Py parameter of partition to grain and on the total 

biomass so far accumulated, as in Equation (A4): 

∆GY = DAM·Py. (A4)

The SAFYsw version also adds a water balance based on the tipping bucket approach 

by [38], where an upward flux (evapotranspiration-driven) and a drainage downward 

flux (gravity-driven) are calculated. An equilibrium evaporation rate (EET) is calculated 

through the Priestley-Taylor equilibrium equation, using albedo (α), solar radiation and 

daytime temperature (T), as in Equation (A5): 

EET = Rg·(0.0045 − 0.00437·α)·(T + 29). (A5)

Following [38], potential evapotranspiration (ETp) is 1.1 times EET, and potential soil 

evaporation (Ep, Equations (A6) and (A7) and potential plant transpiration (Tp, Equations 

(A8) and (A9) are then calculated considering specific LAI thresholds: 

Ep = ETp·(1 − 0.43·LAI);     with LAI < 1, (A6)

Ep = ETp·exp(−0.4·LAI);     with LAI ≥ 1, (A7)

Tp = ETp·(LAI/3);     with LAI < 3, (A8)

Tp = ETp;     with LAI ≥ 3. (A9)

Potential root water uptake (RWU) is dependent on water available in each layer 

above the lower limit of plant water availability (LL, i.e., the wilting point), and is 

calculated as in Equation (A10): 

RWU(l) = 0.00267·exp(62·(SW(l) − LL(l)))/(6.68 − ln(RLV(l))) (A10)

where l indicates the layer, SW(l) is the soil water content and RLV(l) is the root length 

density. With a total RWU ≥ of Tp, the actual water uptake is considered equal to potential 

transpiration (no water stress, actual transpiration equals potential transpiration, Ta = Tp). 
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Otherwise, the transpiration demand is not satisfied and Ta is set equal to the actual 

uptake (limited by soil water availability), and a water stress coefficient (Ks) is calculated 

as the ratio Ta/Tp. Ks is used as a linear modifier of biomass accumulation in Equation 

(A1). 

The downward flux occurs from a soil layer when the soil water content is above the 

drained upper limit (DUL, i.e., field capacity). The excess water is transferred downward 

to the following layers according to a fraction of the difference between saturation (SAT) 

and DUL and to a drainage coefficient (SWCON) that accounts for the infiltrability 

simplified in Equation (A11): 

Drain(l) = SWCON·(SW(l) − DUL(l))·Depth(l) (A11)

Soil water content is calculated daily for each layer from the balance of the upward 

and downward fluxes. 

Appendix B. The Ensemble Kalman Filter (EnKF) Assimilation Procedure 

The EnKF steps used in the data assimilation of the Maccarese study can be 

summarized as follows: 

1. Initialization of the model ensemble: an ensemble of N model simulations (N = 100 

in our case) was generated. Each element of the ensemble was obtained by creating 

a different set of model parameters. Some parameters were considered fixed (Table 

1), while for the calibrated parameters a value was randomly sampled from a 

truncated gaussian distribution with fixed average and lower and upper limits 

corresponding to the range obtained during the calibration (Table 1). This 

perturbation allows for the simulation of the error covariance. 

2. Forecast step: a simulation was run with a daily timestep separately for each element 

of the model ensemble, till the day of observation, to obtain an ensemble of simulated 

LAI values. The error covariance of the forecast can be calculated from the ensemble 

as in Equation (A12): 

(PE)tf = (Xt − E|Xt|)·(Xt − E|Xt|)T/(N − 1), (A12)

where (PE)tf is the error covariance of the ensemble of forecasts at time t, E|Xt| the 

ensemble of model state variables (LAI in this case) at time t, and Xt is the simulated LAI 

mean value. 

3. Observation error propagation: an ensemble of N LAI observations was generated 

for each day with a LAI observation (in our case, each day of the growth cycle, due 

to the LAI fitting procedure). The ensemble was obtained by randomly sampling 

from a gaussian distribution with an average equal to the EO-derived LAI value and 

a standard deviation of 10%. Similarly, to the simulated values, the error covariance 

of the observation can be calculated from the ensemble as in Equation (A13): 

(RE)tf = (Yt − E|Yt|)·(Yt − E|Yt|)T/(N − 1), (A13)

where (RE)tf is the error covariance of the ensemble of observations at time t, E|Yt| the 

ensemble of observations and Yt the original mean value. 

4. Update step: the mean state and the model state covariances are updated using the 

Kalman gain (for each ensemble element) following Equation (A14): 

Kt = Ptf·HT·(H·Ptf·HT + Rt)−1, (A14)

where Kt is the Kalman gain at time t, Ptf is the model state forecast at time t, H is the 

observation operator, assumed constant over time, Rt is the measurement error at time t. 

The mean state was (Equation (A15)): 
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xta = xtf + Kt·(yt − Hxtf), (A15)

where xta is the updated mean state, obtained from the combination of the model forecast 

mean state xtf, the observation mean xtf, and the Kalman gain. 

The model state covariance at time t (Pta) is expressed by Equation (A16): 

Pta = (I − Kt·H)·Ptf, (A16)

where I is the identity matrix. 

5. The forecast, observation error propagation and update steps were repeated 

recursively till the end of the simulation, assimilating each new observation. 
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