
ar
X

iv
:2

20
1.

09
35

5v
1 

 [
cs

.C
V

] 
 2

3 
Ja

n 
20

22

TRANSFORMER-BASED SAR IMAGE DESPECKLING

Malsha V. Perera, Wele Gedara Chaminda Bandara, Jeya Maria Jose Valanarasu, and Vishal M. Patel

Johns Hopkins University

Department of Electrical and Computer Engineering

{jperera4, wbandar1, jvalana1, vpatel36}@jhu.edu

ABSTRACT

Synthetic Aperture Radar (SAR) images are usually de-

graded by a multiplicative noise known as speckle which

makes processing and interpretation of SAR images dif-

ficult. In this paper, we introduce a transformer-based

network for SAR image despeckling. The proposed de-

speckling network comprises of a transformer-based encoder

which allows the network to learn global dependencies be-

tween different image regions - aiding in better despeckling.

The network is trained end-to-end with synthetically gen-

erated speckled images using a composite loss function.

Experiments show that the proposed method achieves sig-

nificant improvements over traditional and convolutional

neural network-based despeckling methods on both syn-

thetic and real SAR images. Our code is available at :

https://github.com/malshaV/sar_transformer

Index Terms— Synthetic Aperture Radar, transformers,

speckle, denoising

1. INTRODUCTION

Synthetic Aperture Radar (SAR), like other coherent imag-

ing systems, is also affected by speckle which is a signal-

dependent, spatially correlated noise. The presence of speckle

impairs downstream tasks of SAR images such as segmenta-

tion, recognition, and detection. Therefore, despeckling of

SAR images positively impacts these downstream tasks.

In the past few decades, different despeckling approaches

have been proposed in the literature. Filter-based approaches

used for despeckling can be generally categorized as local and

non-local filters. Lee filter [1] and Kuan filter [2] are some

despeckling methods which use local filters, while PPB [3]

and SAR-BM3D [4] are examples for non-local filter-based

despeckling methods. A survey of different SAR image de-

specking methods can be found in [5].
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With the advent of deep learning, significant advances

have been made in SAR despeckling. Unlike the despeck-

ling approaches mentioned earlier, convolutional neural net-

works (CNNs) require a pair of noisy and clean (ground truth)

images so that they can be trained in a supervised way. How-

ever, clean references for SAR images do not exist. There-

fore, supervised CNN-based methods generate reference im-

ages via synthetic speckle generation or multi-temporal fu-

sion. SAR-CNN [6] is a CNN-based despeckling network

which is trained on SAR images transformed to the hormo-

mophic form. The ground truth for SAR-CNN is generated

via multi-temporal fusion. Wang et al. [7] proposed ID-CNN

which directly estimates the noise in the original domain and

is trained on synthetic SAR images. Here, the despeckled im-

age is obtained by dividing the speckled SAR image by the

estimated noise. Despeckling approaches such as [8, 9] pro-

posed slight variations on the above CNN-based methods by

introducing different architectures and loss functions.

With the success of transformers in natural language pro-

cessing, they have been successfully adopted to many vision

tasks in recent years. Dosovitskiy et al. [10] proposed Vi-

sion Transformer (ViT) which resulted in an impressive image

classification performance on ImageNet as transformers have

the ability to learn long-range dependencies in an image. In

ViT, the input image is split into multiple linearly embedded

patches which are fed into a transformer encoder. Follow-

ing ViT, many studies have employed transformers in various

computer vision tasks achieving state-of-the-art performance.

For example, U-former [11] and SwinIR [12] are transformer-

based methods proposed for image restoration. To the best of

our knowledge, transformer-based SAR despeckling has not

been studied in the literature.

To this end, we propose a transformer-based network for

SAR image despeckling. The proposed network consists of a

transformer encoder and a CNN decoder. Unlike ViT which

only produces feature maps with fixed resolutions, the hierar-

chical nature of our proposed transformer encoder allows us

to generate high resolution fine features as well as low res-

olution coarse features required for SAR image despeckling.

Similar to [13], our transformer encoder avoids interpolating

positional codes when performing inference. Therefore, the

encoder can easily adapt to different test resolutions without

http://arxiv.org/abs/2201.09355v1
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impairing the performance. The proposed network is trained

end-to-end with synthetically speckled optical images. Fi-

nally, we compare the performance of our proposed network

on synthetic images as well as real SAR images with several

non-local filter and CNN-based methods where we achieve

state-of-the-art performance.

2. PROPOSED METHOD

2.1. Speckle in SAR

For a SAR image with an average number of L looks, the

observed SAR intensity y is related to the speckle-free SAR

intensity x, as follows:

y = xn, (1)

where n is the multiplicative speckle. Under the hypothesis of

fully developed speckle, n follows a Gamma distribution with

unit mean and a variance of 1/L. Therefore, the probability

distribution of n is given by,

p(n) =
1

Γ(n)
LLnL−1e−Ln, (2)

where Γ(.) is the Gamma function. Given y, our goal is to

estimate x.

2.2. Network architecture

The proposed network architecture is illustrated in Fig. 1.

The noisy input image y is passed through an encoder com-

prising of 5 stages, each stage containing an overlap patch

embedding block and a transformer block. The last stage of

the encoder is followed by a convolutional projection block

that acts as a decoder. At each encoder stage, the resolution

of the input is halved to allow the transformer to learn both

coarse and fine details. Output from each encoder stage (ex-

cept for the final stage) is then fed to both the next encoder

stage and the convolutional projection block. The output of

the final encoder stage is passed only to the convolutional

projection block. The components of the network are de-

scribed in detail below.

Overlap Patch Embedding Block: Input to each encoder

stage is first passed through an overlap patch embedding

(OPE) block which uses the overlap patch merging process

introduced in [13]. Its purpose is to combine overlapping

feature patches to obtain features of the same size as that of

non-overlapping patches before passing the features to the

transformer block. In order to obtain the overlapped feature

patches, the input to OPE block is passed through a convo-

lutional layer of kernel size k, embedded dimensions (i.e.

number of filters) e, stride s, and padding p = k/2. In this

work, we set s = 2 for all the OPE blocks in the network. The

e values were set to 32, 64, 128, 320, 512 and k values were

set equal to 7, 3, 3, 3, 3 in each OPE block of stages 1 to 5,

respectively. Next, the flattened output of the convolutional

layer is followed by layer normalization.

Transformer Block. The output of each transformer block

T(Iin) with respect to an input Iin can be summarized as fol-

lows:

T(Iin) = MLP(DWC(X(Iin))) + X(Iin) (3)

where,

X(Iin) = MHA(Iin) + Iin, (4)

where, MHA, DWC and MLP correspond to multi-head atten-

tion layer, depth-wise convolution and multi-layer perceptron,

respectively. Note that we perform layer normalization on Iin

and X(Iin) before passing those to MHA and DWC, respec-

tively. In the original multi-head self-attention process, the

queries Q, keys K and values V have the same dimensions d,

and the self-attention is calculated as:

Attention(Q,K,V) = Softmax
(QK⊤
√

d

)

V (5)

In the proposed network, each transformer block in stages 1

to 5 has 1, 1, 2, 4, and 8 attention heads, respectively. To

reduce the computational complexity, we use the reduction

ratio R introduced in [14], and we set R = 2 for all the trans-

former blocks in the network. The self-attention features are

then passed through the depth-wise convolutional block that

provides positional information for transformers [13]. Sub-

sequently, the output from the depth-wise convolution block

is sent through a Gaussian error linear unit (GELU) before

passing it through an MLP that comprises of a dropout layer

and a linear layer. The output size of the MLPs in stages 1 to

5 are set to 32, 64, 128, 320, and 512, respectively.

Convolutional Projection Block. The convolutional projec-

tion block is used to upsample the outputs from the trans-

former blocks to the original image size as illustrated in Fig.

1. The upsampling layers increase the resolution by a factor

of two. The output of the residual block (RB) for a given input

Iin can be computed as follows:

RB(Iin) = Conv3×3(ReLU(Conv3×3(Iin))) + Iin, (6)

where Conv3×3 refers to 3 × 3 convolution layer and ReLU

denotes rectified linear unit.

2.3. Loss Function

We train the proposed network using the l2 loss (Ll2 ) given

by:

Ll2 = ‖x̂ − x‖22, (7)

where x and x̂ denote the ground truth and the predicted out-

put, respectively. In addition, we employ total variation loss

in order to encourage smoothness while preserving edges.

The total variation loss (Ltv) is defined as follows

Ltv =
∑

i, j

|x̂i+1, j − x̂i, j| + |x̂i, j+1 − x̂i, j|. (8)

The overall loss function L is given by:

L = λ1Ll2 + λ2Ltv, (9)

where λ1, λ2 are the weights that specify the contribution of

Ll2 and Ltv, respectively. In this study, we set λ1 = 1 and

λ2 = 5 × 10−5 to put a strong emphasis on the Ll2 loss.
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Fig. 1. Overview of the proposed despeckling transformer.

Table 1. Results on synthetic images of Set12 dataset [16].

Method PSNR SSIM

PPB [3] 21.90 0.599

SAR-BM3D [4] 23.51 0.701

SAR-CNN [6] 24.51 0.651

ID-CNN [7] 24.44 0.685

Proposed method 24.56 0.718

3. EXPERIMENTS AND RESULTS

To train the proposed network, we generated single-look (L =

1) synthetic speckle images using optical images following

equations 1 and 2. We used the Berkeley segmentation dataset

(BSD) [15] to obtain the optical images where 450 and 50

images of size 256× 256 were allocated for training and vali-

dation, respectively. The proposed network was implemented

using PyTorch and trained with a learning rate of 0.0002 for

400 epochs. The performance of the proposed algorithm on

synthetic speckled images were tested using a set of well-

known testing images [16] in terms of Peak Signal-to-Noise

ratio (PSNR) and Structured Similarity Index (SSIM). We

have compared the performance of the proposed network with

PPB [3], SAR-BM3D [4], SAR-CNN [6] and ID-CNN [7].

Note that the two CNN-based methods (SAR-CNN and ID-

CNN) were trained on the same synthetic data as the proposed

method.

The corresponding results are summarized in Table 1.

From Table 1, it can be observed that the proposed method

outperforms both traditional and CNN-based despeckling

methods in terms of PSNR and SSIM when tested on synthet-

ically speckled images.

We also evaluate the despeckling performance of our pro-

posed method by testing on real SAR images. We compare

Table 2. Results on real SAR images.

Method
Region 1 Region 2 Region 3 Region 4

ENL ↑ Cx ↓ ENL↑ Cx↓ ENL↑ Cx↓ ENL↑ Cx↓
PPB 87.0 0.11 125.5 0.09 21.0 0.22 117.8 0.09

SARBM3D 110.8 0.09 104.2 0.10 34.9 0.17 122.9 0.09

SARCNN 87.4 0.11 51.12 0.14 30.7 0.18 68.6 0.12

IDCNN 47.6 0.14 33.3 0.17 23.1 0.21 34.5 0.17

Proposed 154.4 0.08 171.6 0.08 39.2 0.16 133.19 0.08

the performance with the same despeckling approaches ex-

plained above. The despeckled results on the real SAR im-

ages are visualized in Fig. 2 for qualitative comparison. Since

real SAR images do not have clean ground truth images, we

use equivalent number of looks (ENL) and the coefficient of

variation (Cx) derived in a homogeneous region (regions con-

sidered in this study are marked as red boxes in Fig. 2) as

quantitative measures for comparison. ENL is the ratio be-

tween the square of the mean and the variance of a homo-

geneous region, where as Cx is given by the ratio between

standard deviation and the mean intensity of a homogeneous

region. The results in terms of ENL and Cx are given in Table

2. Our proposed method resulted in the highest ENL values

in all 4 regions which signifies the best despeckling perfor-

mance out of the considered approaches. Low Cx values indi-

cate better preservation of texture and our proposed algorithm

gave the lowest Cx values in all cases. From Fig. 2, we can

observe that ENL and Cx results are consistent with the visual

results.

4. CONCLUSION

We proposed a network architecture that encompasses a

transformer-based encoder and a convolution-based decoder,

for SAR image despeckling. When compared with several
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Fig. 2. Results on real SAR images.

existing filter-based and CNN-based despeckling methods,

the results on synthetic and real SAR images show promis-

ing quantitative and qualitative improvements. The proposed

method proved to be effective in reducing speckle while

preserving the texture and fine details in real SAR images.

5. REFERENCES

[1] Jong-Sen Lee, “Speckle analysis and smoothing of synthetic

aperture radar images,” Computer Graphics and Image Pro-

cessing, vol. 17, no. 1, pp. 24–32, 1981.

[2] Darwin T. Kuan, Alexander A. Sawchuk, Timothy C. Strand,

and Pierre Chavel, “Adaptive noise smoothing filter for im-

ages with signal-dependent noise,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. PAMI-7, no. 2,

pp. 165–177, 1985.
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