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ABSTRACT

Global horizontal irradiance (GHI) plays a significant role
in maintaining the earth’s ecological balance and generating
electricity in photovoltaic systems. While the satellites have
more range, they have been shown to over/under-estimate the
true values of GHI that are observed at the ground-based sta-
tions. Hence, this study aims at analyzing the relationship
between these two sources of GHI data in order to better
and effectively utilize the reach of satellites for GHI analy-
sis. The paper identifies a near linear relationship between
the two and thereby concludes that an approximate mapping
from satellite- to ground-based GHI values can be obtained.

Index Terms— Solar Irradiance, Renewable Energy, Re-
mote Sensing, Satellite Data, Machine Learning

1. INTRODUCTION

Horizontal surface solar irradiance, or global horizontal irra-
diance (GHI), is the amount of power reaching a horizontal
plane on the surface of the earth from the sun. It plays a vi-
tal role maintaining the surface energy balance and affects
the behaviour and growth of flora and fauna [1]. It also drives
various atmospheric and climate phenomenon [2]. Apart from
being essential to the very existence of life on the earth, the
amount of GHI that reaches the surface of a photovoltaic sys-
tem determines the amount of electrical energy that it can gen-
erate [3]. Hence a correct estimation of its value at the surface
of the earth is crucial for multiple research directions.

Primarily, there are two sources for GHI data collec-
tion and estimation, i.e., satellite and ground-based sensors.
Satellites can cover a larger area, including the remote lo-
cations, mountains and oceans, a feat which is not realistic
with ground-based sensor systems. However, it has been
noted that satellites generally provide biased estimations for
the GHI values [4, 5, 6]. Typically low spatial resolution of
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the satellites further elevates the problem, making their read-
ings more inaccurate. To this end, this paper1 analyzes the
relationship between the satellite and ground-based sensor
readings. The paper further attempts to model ground-based
GHI readings from the satellite data.

1.1. Relevant Literature

Estimating surface solar irradiance values from the satellites
has been an area of ongoing research [7]. Satellites typically
sense the solar energy going into the top of the earth’s atmo-
sphere and the energy that is reflected back. These observa-
tions are then used to estimate atmospheric constituents and
their effects on incoming solar radiations. Post accumulat-
ing these estimations the surface solar irradiance is estimated.
Being such an indirect process, it becomes very difficult to
correctly estimate the true ground-level values from the satel-
lites.

In a comparative analysis, it was noted that the average er-
rors of satellite-derived GHI readings range between −7% to
upto 25% in Nigeria [4]. Upto 9.3% overestimation error in
satellite-based values was reported in a separate study in Aus-
tralia [5]. Manara et al. [6] analyzed the accuracy of satellite-
based GHI over varying altitude levels. It was noted that the
results vary with elevation. The values were generally overes-
timated in low-lying areas whereas they were underestimated
at more elevated locations. In general, there was a question
on the accuracy and effectiveness of the methods which are
being used to estimate GHI from the satellite readings.

2. DATASET

The data was separately downloaded for ground-based sta-
tions and the satellite derived readings. The details for both
datasets is discussed in the following subsections.

1In the spirit of reproducible research, the code related to this paper is
available from https://github.com/ydjoel/SolarSatGround.
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2.1. Ground-based Sensor Data

We collected the GHI land-based data from the Solcast web-
site [8]. Specifically, the dataset provides total irradiance or
GHI that is received on a horizontal surface on the ground. It
is the sum of direct and diffuse irradiance components. In this
study, we choose Dublin as the city under consideration. By
default, Solcast provides data from the nearest available solar
farms given the latitude and longitude information.

Seven years worth of data was obtained from 2014 to
2020. The data consists of the timestamp and the GHI read-
ings in W/m2. Apart from that, other vital information about
the exact location, altitude and time zone is provided in the
dataset. To organize the data better, it was separated into lists
where data from the same day are kept together similarly days
of a month are held together and months of the same year.

2.2. ERA5 Data

The satellite-based solar irradiance data is compiled from the
Climate Data Store (CDS) website which was provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) [9]. The ERA5 dataset provides hourly estimates
for many atmospheric, ocean-wave, and land-surface quanti-
ties. In this case the estimated surface level GHI values were
provided under the name of ‘Surface Solar Radiation Down-
wards’ variable.

The data was obtained by making API calls to the CDS
Server. A POST request is sent with exact specifications of
the variable name, timestamps, and the geographical area to
obtain the final response in NetCDF format. In this case, the
data was downloaded for the exact same location for which
the ground-based data was taken. Since the ERA5 data is
the hourly reanalyses data over 3 hours, a shift in sequen-
tial data by 2 time-steps was required to match the timestamp
of the ground-based sensor data. Furthermore, the raw satel-
lite data was divided by 3 × 3600 to convert the units from
Js−1m−2 to Wm−2 to match the units that were obtained
from the ground-based sensors.

3. METHODS

Both the land and satellite datasets have solar radiation values
spaced at successive intervals of an hour. Fig. 1(a) shows
the actual GHI values that were obtained from the ground-
based sensor dataset, whereas Fig. 1(b) shows the trend of
GHI values that were estimated from the satellites.

It can be clearly noted that the radiation is high in warmer
months of a year but comes down progressively as we get
to December and January. This cycle continues each year.
The only notable difference between the two plots is the peak
value they attain. Ground-based sensors seems to record
higher observations than its satellite counterparts. In other
words, satellites are generally underestimating the true GHI
values in this case. To compare the difference between the

(a) Actual GHI values as obtained from ground-based sources [8]

(b) GHI data estimated from satellites [9]

(c) Difference between ground- and satellite-based observations

Fig. 1: GHI data estimated from ground-based station and
satellite data.

readings obtained from the two datasets, a difference curve
was plotted by subtracting the satellite readings from the
corresponding ground-based sensor readings. The obtained
difference plot in Fig. 1(c) confirms that there is considerable
difference in the satellite estimations and the actual values of
the GHI at the earth’s surface.

To further understand the impact of temporal variations on
the data, boxplots of daily mean differential GHI were plotted
against different months for different years. Fig. 2 shows one
such plot for the year 2020. It can be clearly seen from the fig-
ure that there is a huge amount of variations across different
months. However, on the other hand, there is no such signifi-
cant difference between in the GHI values of the same month
over the years. Fig. 3 shows the boxplots of daily mean GHI
values for the August month over the years. Overall, it can be
noted that the variation over months is much more consider-
able than over the years. Hence, the paper attempts to create
different models for each month for better accuracy.

While the GHI values are reported for the whole 24 hours
in both the datasets, they are 0 (or nearly 0) at nighttime. The
length of nighttime also varies across the year as nights are
longer in winters but much shorter in summers. However, in



Fig. 2: Daily mean difference between satellite and ground-
based sensor data as obtained for different months in 2020

Fig. 3: Variation in daily mean GHI values from ground- and
satellite- based sources for the month of August from 2014
and 2020

any case, all such timestamps were removed where either of
the ground- or satellite-based readings were 0. Fig. 4 show
the number of remaining data points (across the years) that
were considered for further analysis post this stage. A clear
bell-shaped curve can be seen re-emphasising the idea that
summers have longer days than winters.
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Fig. 4: Number of daytime data points that were available for
each month accummulated from 2014− 2020

Once the data has been filtered for relevant values, it is im-
portant to identify underlying patterns in the data to establish
a mapping from satellite-based readings to true ground-based
GHI values. For this case, linear regression was performed.
As noted before, for better analysis, individual models must
be trained for each month. Consequently, the data was further
divided into 12 parts by months over which independent lin-
ear regression models were trained. Note that the dataset was
combined over the years as no significant variation across the
years was noticed.

Since a significant variation in GHI values can be noted
across the day, it is important to incorporate the timestamp
as input feature to the regression models. Individual com-
ponents of timestamps (i.e. day of month and hour of the
day) were extracted and converted into one-hot encoded vec-
tors. These were then concatenated to result in the final input
feature vector. Since different models were created for the
different months and each month has similar number of day-
light hours, the size of one-hot encoded ‘hour’ vectors will
vary from one month to another as per the number of day-
light hours in that particular month. Same goes for the ‘days’
vector as well. Thus, including the satellite derived GHI read-
ings, atleast 40 features were created for a particular month.
Finally each month’s data was randomly shuffled and an 80-
20 split was made to divide the data into training and test set
respectively. Coefficient of determination (R2) was used to
evaluate the model’s performance.

4. RESULTS AND DISCUSSIONS

Fig. 5(a) and 5(b) shows the linear regression results on the
test set for two sample months of January and June, respec-
tively. The data can surely be seen to be highly correlated and
a simple linear regression itself decently approximates the un-
derlying data. However, its still not accurate by a long shot.

To evaluate the fit coefficient of determination (R2) met-
ric was used. It gives a goodness-of-fit measure for linear
regression model. R2 explains how much of the variance in
dependent variable can the independent variables collectively
explain. Fig. 6 shows the obtained R2 values for all 12 mod-
els, where each of them correspond to the respective month
in the year. As seen from the figure, the value of R2 falls be-
tween 0.75 and 0.85. This indicates that although linear fit is
definitely not the best approximation, it certainly proves that
such a mapping is possible with more complex models like
neural networks.

5. CONCLUSION & FUTURE WORK

The paper presents a systematic analysis of ground- and
satellite- based datasets of global horizontal solar irradiance
(GHI). It was noted that satellite estimations are generally
significantly off than the true ground-level observations. Not
only that, but this disparity varies significantly across the



(a) Regression over the month of January (b) Regression over the month of June

Fig. 5: Scatter plot showing the satellite readings and the corresponding ground-based sensor readings in the test set. The line
through the center shows the linear regression fit on the data.

Fig. 6: Coefficient of determination Values for each month

months of the year. As such the paper recommends creating
different models for different months of the year in order
to find the best mappings from the satellite data to true GHI
values. Lastly, it was shown that this mapping is almost linear
but a significantly better fit might be obtained by using more
complex models than linear regression. In future, the authors
would like to analyze the relationship even further and try
to model it with better coefficient of determination scores.
Additionally, the plan is to study the generalizability of the
identified models and/or the approach that is discussed in the
paper for different locations on the earth.
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