SIAMESE ATTENTION U-NET FOR MULTI-CLASS CHANGE DETECTION

Sol Cummingsl’z, Lukas Kondmann®?3, Xiao Xiang Zhu?3
'PASCO CORPORATION
2Technical University of Munich (TUM)
3German Aerospace Center (DLR)

ABSTRACT

Recent developments in deep learning have pushed the ca-
pabilities of pixel-wise change detection. This work intro-
duces the winning solution of the DynamicEarthNet Weakly-
Supervised Multi-Class Change Detection Challenge held at
the EARTHVISION Workshop in CVPR 2021. The proposed
approach is a pixel-wise change detection network coined
Siamese Attention U-Net that incorporates attention mech-
anisms in the Siamese U-Net architecture. Moreover, this
work finds the location of the attention mechanism within the
network is crucial in achieving higher performance. Position-
ing the attention blocks in the up-sample path of the decoder
filters noisy lower resolution features and allows for more
fine-grained outputs. The impact of architectural changes,
alongside training strategies such as semi-supervised learn-
ing are also evaluated on the DynamicEarthNet Challenge
dataset.’

Index Terms— Change Detection, Siamese Neural Net-
work, Semantic Segmentation

1. INTRODUCTION

Automatic change detection is a crucial task in remote sens-
ing that can aid in analyzing and monitoring the Earth’s sur-
face. An increase in the availability of image data due to
ever-shortening revisit times and rapid advancements in deep
learning have allowed for significant improvements [ 1] in au-
tomatic change detection.

Pixel-wise change detection involves the localization and
classification of areas within images that have undergone a
change. Previous methodologies have approached the local-
ization and classification independently. [2] focus on the clas-
sification of change using Siamese Neural Networks for im-
age patches, where features from multiple inputs are com-
pared within a network after feature extraction using shared
weights. However, change detection at a pixel level must rely
on a separate localization network.

The U-Net architecture [3] and subsequent improvements
[4] exhibit high performance in object localization, specifi-
cally semantic segmentation. Additionally, these networks

ICode is available at: https://github.com/solcummings/
earthvision2021l-weakly-supervised

Fig. 1. Structure of the Siamese Attention U-Net. Feature
maps of the two inputs are demarcated in different colors. At-
tention blocks are signified as o.

generalize to remote sensing imagery [5], where targets can
be small relative to image sizes.

More recent works such as [6] propose a Siamese U-Net
architecture, where semantic segmentation and change classi-
fication is done in an end-to-end manner. This allows for effi-
cient and high performing pixel-wise change detection with a
single network.

With ever-increasing amounts of available data, method-
ologies that make use of unlabeled data have gained traction.
Specifically, recent improvements in semi-supervised learn-
ing that make use of large unlabeled datasets [7] have im-
proved classification performance on ImageNet.

This work outlines the winning approach out of over 100
submissions in the DynamicEarthNet [8] Weakly-Supervised
Multi-Class Change Detection Challenge held at the EARTH-
VISION Workshop in CVPR 2021, which incorporates im-
provements to the Siamese U-Net architecture. In particu-
lar, the network is adapted to better suit small objects for
change detection. Additionally, this work shows that im-
provements to training strategies such as loss functions and
semi-supervised learning can boost performance. Section 2
will outline the dataset, network architecture, and training
strategies. Section 3 will discuss results from experiments,
and section 4 is the conclusion.
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2. METHOD

2.1. Dataset

The dataset from the DynamicEarthNet Weakly-Supervised
Multi-Class Change Detection Challenge is used for sub-
sequent experiments. This dataset consists of images from
Planet and Sentinel-2 satellites alongside monthly pixel-wise
ground truths from January 2018 to December 2019 for
75 locations. The ground truths are labelled with changes
to impervious surfaces, agriculture, forest/other vegetation,
wetlands, soil, water, snow/ice, or no-change surfaces.

The dataset is categorized into three parts: the training
dataset with 55 locations, public validation dataset with 10
locations, and test dataset with 10 locations. Among the train-
ing dataset locations, only 10 have ground truth labels. 80%
of the training dataset is randomly sampled for training and
the remaining 20% is used for internal validation.

This work does not use the Sentinel-2 images, and instead
solely uses the higher resolution Planet images for accurate
semantic segmentation. Due to the large size of the origi-
nal images and limited GPU VRAM, image chips with side
lengths of 128 pixels are cropped from the original image.
The image chips are further randomly cropped to side lengths
of 112 pixels, randomly flipped vertically and horizontally,
and randomly rotated 90 degrees before entering the network
during training. The public validation dataset and test datatset
are predicted on at original image size, with test time augmen-
tations (TTA) of vertical and horizontal flipping and 90 degree
rotations.

2.2. Network Architecture

Siamese U-Net architectures with and without attention
blocks are experimented with. The network architecture of
the Siamese Attention U-Net is illustrated in Figure 1. Fea-
tures of the two image inputs are extracted and down-sampled
through the encoder of the network, with shared weights. The
features are then concatenated and up-sampled through the
decoder of the network, similar to [6]. In order to investigate
the influence of low resolution features from the decoder on
segmentation outputs, bilinear, transposed convolution, and
sub-pixel convolution [9] up-sampling methods are explored.
Attention blocks from [4] are added to the network to improve
overall performance. However, the position of the attention
blocks within the network has a significant influence on the
network’s performance.

In [4], attention blocks are attached to the skip connection
paths from the encoder to disambiguate noise from higher res-
olution features. However, due to the small size of targets in
remote sensing semantic segmentation, the higher resolution
features from the encoder network often carry more seman-
tically important information, whereas lower resolution fea-
tures may introduce noise. In order to prioritize higher res-
olution features and retrieve only relevant information from
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Fig. 2. Structure of the attention block. Unlike [4], the fea-
tures from the up-sampled path are attended.

low resolution features, the attention blocks are embedded in
the up-sampled path. The proposed attention block is shown
in Figure 2.

2.3. Loss Functions

Evaluation on the public validation dataset is conducted using
mean IoU across all classes. Due to the evaluation metric
being associated with IoU, Jaccard loss [10] is experimented
with. Additionally, Jaccard loss is compared to Dice loss [ 1],
which is a common loss function in semantic segmentation
tasks.

2.4. Weakly Supervised Learning

[7] show the effectiveness of semi-supervised learning on
classification tasks. However, aspects such as the augmenta-
tions used for noisy training cannot be automatically applied
to semantic segmentation tasks, let alone remote sensing
change detection tasks. Still, experiments in [7] show im-
provements in performance when using hard pseudo labels.
Thus once a network is trained on the training dataset, hard
pseudo labels are applied to the public validation and test
dataset and a new network is trained on the combined dataset.

2.5. Implementation Details

Networks are trained until there is no update to the inter-
nal validation loss, mean F1-score, or mean IoU. These
trained networks are then used to predict on the public vali-
dation dataset. Experiments are conducted on a single Nvidia
RTX2070 with a batch size of 30 in mixed precision. The
learning rate is scheduled from le-2 to le-4 using a cosine
annealing scheduler with warm restarts.

3. RESULTS

The impact of up-sampling methods in the decoder of Siamese
U-Nets without attention are shown in Table 1. Scores im-
prove when using more sophisticated operations such as
the transposed convolutions or sub-pixel convolutions when
compared to bilinear up-sampling. Sub-pixel convolutions
increase mean IoU scores the most at a small cost in parame-
ter count. Nonetheless, variations in scores display the need
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Fig. 3. Comparison of results from the Siamese U-Net and Siamese Attention U-Net on the test dataset

for an exploration of effective up-sampling techniques in the
decoder.

Up-sample method  mloU
bilinear 0.2586
transpose 0.2606
sub-pixel 0.2623

Table 1. Mean IoU scores on the public validation dataset
of up-sampling methods in Siamese U-Net. Experiments are
carried out using Jaccard loss and without TTA.

Experiments on the attention blocks in Siamese U-Nets
are shown in Table 2. The network without attention blocks
outperforms that of the original attention block configuration
proposed in [4], where skip connection features are attended.
On the other hand the Siamese Attention U-Net, which at-
tends on up-sampled features, outperforms both. This implies
the need for prioritization in up-sampled features instead of
skip connection features.

Attention mloU
none 0.2635

skip connection  0.2603
up-sample 0.2658

Table 2. Mean IoU scores on the public validation dataset of
Siamese U-Nets with and without attention blocks. Experi-
ments are carried out using Jaccard loss, sub-pixel convolu-
tion up-sampling, and TTA.

A comparison of the results from the Siamese U-Net and
the proposed Siamese Attention U-Net on the test dataset is
shown in Figure 3. The Siamese Attention U-Net creates
more fine-grained segmentation results due to preserving in-
formation in high resolution features while reducing noise in
low resolution features.

Experiments on the loss function are shown in Table 3.
Dice loss and Jaccard loss have comparable performances.
While multiple loss objectives are typically combined using
a hyperparameter when training a single network, this hyper-
parameter is often manually determined and requires multiple
training runs. This work instead trains multiple networks on
each loss function and averages their predictions. Due to the
loss functions optimizing for slightly different metrics, en-
sembling networks trained on each is effective. Additionally,
the influence of each loss objective can be controlled with a
weighted average when ensembling predictions, as opposed
to retraining a single network using a different hyperparame-
ter.

Loss function = mloU
jaccard 0.2658
dice 0.2668
ensemble 0.2676

Table 3. Mean IoU scores on the public validation dataset
of loss functions for Siamese Attention U-Net. Experiments
are carried out using sub-pixel convolution up-sampling and
TTA.

Experiments on semi-supervised learning are shown in
Table 4. Pseudo labels on the public validation and test
dataset improve the performance on the public validation
dataset across loss functions. However, this process requires
two consecutive training steps; the first step is regular train-
ing on the original dataset, and the second step is training on
the original dataset along with hard pseudo labels generated
from the first step. Although there is a gain in mean IoU
scores, semi-supervised learning using hard pseudo labels is
not suitable for time critical applications.



Semi-supervised Loss function mloU (val)
none jaccard 0.2658
val+test jaccard 0.2669
none dice 0.2668
val+test dice 0.2674
none ensemble 0.2676
val+test ensemble 0.2684

Table 4. Mean IoU scores on the public validation dataset
with or without pseudo labels of the public validation and
test dataset for Siamese Attention U-Net. Experiments are
carried out using sub-pixel convolution up-sampling, Jaccard
loss, and TTA.

4. CONCLUSION

This work examines the effectiveness of attention blocks
in the Siamese U-Net. Experiments reveal the originally
proposed placement of the attention block may hinder the
network, but changing the position of the block improves
performance. Siamese Attention U-Net, which computes at-
tention in the up-sample path of the decoder, is able to denoise
lower resolution features and allows for fine-grained outputs.
This architectural change, alongside enhancements in the
loss function and semi-supervised learning boosts mean IoU
scores for the DynamicEarthNet Weakly-Supervised Multi-
Class Change Detection Challenge.
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