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ABSTRACT

In order to estimate tree biomass, allometric equations take
tree parameters such as tree height, wood density, circumfer-
ence of trunk, and crown diameter as input parameters. Given
that most of these quantities are challenging to be extracted
from remote sensing data, we evaluate the option to approx-
imate biomass by tree height only. We study our approach
by evaluating linear regression, random forest, and Gaussian
process regressor models when applied to the 2016 Jucker
dataset. Results indicate that linear models fail to properly
capture the relationship between biomass and tree height, but
the Gaussian process regressor outperms the other two candi-
date models.

Index Terms— Tree biomass estimation, allometric
equation, random forest models, Gaussian process regres-
sion

1. INTRODUCTION

Forest covers nearly a third of the land on Earth. As a bio-
physical parameter, biomass is key to tracking tree growth,
and quantifying the health of corresponding ecosystems. For-
est above-ground biomass—AGB, also simply referred to as
biomass here—is defined as the total dry weight of the above-
ground parts of trees in a forest. For accurate quantification
of forest biomass, it is required to harvest, dry, and weight all
trees [[1]. Obviously, such an approach is cost inefficient, and
contradicts effort of preserving the plant’s biosphere.

As an alternative, tree parameters such as wood density,
diameter at breast height, height, etc. may serve as estimators
of tree biomass through input to allometric equations [2} (3|
4, 15]. In trees, the trunk accounts for a major fraction of the
total biomass. Approximating the stem as a cone, biomass is
related to average wood density, tree height, and tree diam-
eter (at breast height). Consequently, the AGB of a tree is
considered as a function of such parameters. This relation is
specified empirically. For example, linear log—log regression
models are commonly employed [4} 6] with model parameters
estimated by training data. Allometric equations may vary in
space, per tree species, tree age, etc. The GlobAllomeTree
platform [7] makes available some of such results. Luo et al.

listed the state-of-the-art allometric equations for China [8]],
specifically.

To evaluate biomass on a large scale, manually measur-
ing the tree’s parameters is out of reach in practice. High-
resolution remote sensing data may serve to automatically
estimate tree parameters [9, [10} 16]. Subsequently, biomass
is derived from given allometric equations. However, some
parameters such as stem diameter and wood density are diffi-
cult to be estimated from remotely sensed data. Nevertheless,
LiDAR surveys have the ability to accuratly determine tree
height. Instead of applying separate allometric equations for
different tree species or geographic location, global biomass
quantification calls for generic models. Jucker et al. [6]
demonstrated estimation of crown diameter and tree height
from LiDAR surveys to quantify above-ground biomass by
two equations. Since estimation of crown diameter is a chal-
lenge for dense forests [11]], this paper considers biomass
quantification from tree height approximation.

In the following we employ three regression models,
namely: linear regression (LR), random forest (RF), and a
Gaussian process regressor (GPR) to compute biomass from
tree height information. For model training, we utilize the
2016 Jucker [6] dataset building a global model applicaple to
all biome types. Our focus targets on model error quantifica-
tion to determine which generalizes best.

2. MODELS

2.1. Linear Regression

Linear regression models are widely employed to capture the
relationship of tree biomass and tree parameters on a logarith-
mic scale (base 10):

logB=alogH +b+e¢, (D

with a and b are coefficient and bias specified by training data.
B and H denote biomass and tree height, respectively, and ¢
the model residuals.



2.2. Random Forest

Random forest (RF) is one of the most widely used regres-
sors for biomass estimation [12} [13]]. It is an ensemble lean-
ing technique training several decision tree models in parallel.
RF randomly selects training data into sub-samples with re-
placement. Each decision tree is trained for regression on one
of those subsets. In inference, RF outputs an average of pre-
dictions provided by the set of decision trees. Random forest
outperforms any of the individual decision trees, and it mini-
mizes model over-fitting.

2.3. Gaussian Process Regressor

A Gaussian processes [14] is defined as

f(@) ~ N(m(z), k(z, z.)) 2
with x input data. Mean and covariance is given by
m(z) = E[f(z)], 3)

k(z, @) = E[(f(2) —m(2))(f(2) —m(zs))] . 4
The mean and variance at test point can be derived as
py. =m(@s) + K, (K +0°1)" (y = m(X)), ()

o2 =K., — K.,"(K +7I)'K,, (6)

with K, = k(z,xz*), K = k(z,z), K. = k(z*,z*), 0
is the noise level of input data, and I is an identity matrix.
The covariance matrix K can be defined by a learnable kernel
function k(-,-). The kernel function adds prior assumptions
on the smoothness of f, i.e., nearby data points would have
highly correlated targets. Usually, radial basis function (RBF)
kernel is exploited:

d 12

k(w,w’)exp{;z(x’lﬁ)} ™

i=1 i
where d = 1 in our case, and [; is a hyper-parameter to be
optimized. In our case, given the the height and biomass pairs
in training set X and y, the mean and variance of the es-
timated biomass corresponding to heights x, are calculated

using equations in Eq. (3)(6) respectively.

3. RESULTS

3.1. Datasets

The dataset assembled by Jucker et al. [6] serves to train and
validate the three models. 2,395 globally collected measure-
ments is available in the dataset covering all dominant biome
types. For each data point, the tree was harvested to measure
its height (in meter), crown diameter (in meter), trunk diame-
ter (in centimeter), and AGB (in kilogram). We exclude data
with trunk diameter less than Scm. In addition we randomly
pick 90% of the samples in order to estimate model parame-
ters, leaving the remaining 10% for model testing.
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Fig. 1. Histograms of log-scaled biomass (in kilogram) and
tree height (in meter) distribution of the 2016 Jucker dataset.

3.2. Evaluation Methods

Three indices, namely: the coefficient of determination (R
squared, R?), the root mean square error (RMSE), and the
bias are used to quantify the accuracy of our candidate mod-

. S0 (= i)
Ry ) =1~ % ®)
RMSE*(y, ) = ig(yi = 9:)% ©)
Bias(y,§) = ;i yy_y (10)

where n is the number of the samples, y; and ¢; are the ith
ground truth and predicted values, respectively. y denotes the
mean y ., yi/n.

In our experiments we modified the R-squared computa-
tion to exclude outliers: those have significant impact on the
score. We define outliers as points whose absolute errors are
three times larger than the overall mean absolute error.

3.3. Experimental Results

Tablelists R-squared, RMSE, and bias for linear regression,
random forest, and Gaussian process regressor. Apparently,
the linear model performs worst. The two non-linear models
significantly improve performance: with a margin in R? of
more than 25%. The corresponding RMSE adjusts by a to-
tal of about 320 to 350 kilograms. Both, random forest and
Gaussian process regressor, exhibit comparable performance.

Figure [2] presents fitted curves and related prediction er-
rors (left column), the scatter plots of predicted vs. observed
AGB (column in center), and the histograms of absolute er-
rors (right column) for all three candidate models. We observe
that the error interval (blue-shaded area in Figure : (a) does
not align well with the fitted curve, suggesting that the linear
model is not able to properly fit the data. In fact, the LR model



Table 1. Model performance of linear (LR) and non-linear
(RF, GPR) models to correlate tree height to tree biomass.

R2 RMSE (kg) Bias
LR | 0.5326 1466.55 0.2931
RF 0.8039 1147.07 0.2091
GPR | 0.8377 1117.9 0.2187

tends to over-estimate the biomass for tree height above 1.7
meters or below 3.0 meters (in dB). The error interval shoots
above the fitted curve, and it under-estimates otherwise.

The qualitative improvement of model performance of the
non-linear approaches over the linear one reflects in plotting
absolute error histograms: We observe a decreased density for
close-to-zero errors of fig. 2] (f) relative to (c). The random
forest (f) and Gaussian process regressor (i) perform equally
well. Indeed, the error intervals of fig. [2| (d) and (g) align
well with the fitted curves. However, the fitted curve of the
Gaussian process regressor is more smooth—an indication of
model robustness.

4. CONCLUSION

In this paper, we compared three models—namely: linear re-
gression, random forest, and Gaussian process regressor—for
the above ground biomass estimation from tree height. Re-
sults indicate that linear models are unable to properly cap-
ture the relationship of biomass and tree height, but a Gaus-
sian process regressor reflect such a correlation well. It seems
more robust compared with other non-linear models such as
random forests. However, our study is limited to the Jucker
dataset. It remains to confirm and test our findings with larger
amounts of data in future work. In fact, preliminary results
on a dataset covering a continuous patch of forest indicate:
model bias significantly decreases on spatially aggregating
single tree biomass estimates. Moreover, the trained model
should be compared with other allometric equations that has
trunk diameter involved as input.
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Fig. 2. Plots of tree height—-AGB model fits including prediction errors (a,d,g), corresponding scatters of predicted vs. observed
biomass (b,e,h), and the distributions errors (c,f,i) training on the 2016 Jucker dataset. Each row corresponds to one of the three
models, namely: linear regression (a)—(c), random forest (d)—(f), and Gaussian process regression (g)—(i)). The dashed line in
(b,e,h) is the 1:1 line.
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