AUTOMATING SEA ICE CHARACTERISATION FROM X-BAND SAR WITH CO-LOCATED
AIRBORNE LASER SCANNER DATA OBTAINED DURING THE MOSAIC EXPEDITION

Karl Kortum"2, Suman Singha', Gunnar SpreenQ, Stefan Hendricks®

'Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Bremen, Germany,
2 Institute of Environmental Physics, University of Bremen, Bremen, Germany,
3 Alfred Wegener Institute for Polar and Marine Research, Bemerhaven, Germany

ABSTRACT

The research vessel *Polarstern’, moored to an ice floe, com-
pleted a year long drift with Arctic pack ice in the autumn
of 2020. During that expedition, named MOSAIiC, a compre-
hensive data set of airborne laser scanner (ALS) and space-
borne X-band SAR images in the area of the research vessel
was acquired. With successful fusion of these two measure-
ments, we can extrapolate sea ice features from the ALS data
to the entire SAR scene using a convolutional neural network
(CNN). From two preliminary scenes of ALS data we are able
to show this for classes of sea ice roughness. This will be
the basis for more comprehensive research, once the complete
data set is available.

Index Terms— Sea Ice, SAR, ALS, CNN

1. INTRODUCTION

Supervised sea ice classification and characterisation from
synthetic aperture radar imagery (SAR) is to this day heavily
reliant on manual ice charting (eg. [1], [2])) and thus sub-
ject to human interpretation, errors and bias. Unsupervised
approaches on the other hand use largely segmentation tech-
niques, where the predicted classes then have to be manually
mapped to some physical classes (eg. [3]). Until now it
was not possible to overcome this human interaction with
the data, since there was no comprehensive ground truth data
available year round (satellite altimeters in principle could
be used, as their accuracy is competitive [4], however this
has not been investigated - probably due to the lack of 2D
capability). In the advent of the MOSAIiC mission, however,
this has changed. We will soon have access to these types
of data sets and be able to train more comprehensive models
accordingly. ALS Data has in the past been shown to relate
to ice classes significantly [S]. We initially analyse two ALS
scenes to develop and test the methods to then be used on the
entirety of the fully processed data, once it is available.

Data used in this manuscript was produced as part of the international
Multidisciplinary drifting Observatory for the Study of the Arctic Climate
(MOSAIC) with the tag MOSAiC20192020. Thanks also to DFG Projekt
’MOSAiCmicrowaveRS’ for funding.

2. MEASUREMENTS

The elevation measurements used for this research comprise
of two ALS scenes. One is from the 24th of December 2019,
between 07:40:00 to 09:16:33 UTC, the other from the 25th
of December, collected between 14:07:53 and 15:40:25 UTC.
The ALS data has been acquired by a a helicopter flying a
mow-the-lawn pattern over the MOSAIC floe. The result-
ing scenes have a geospatial resolution (grid spacing) of 0.5
meters. The two TerraSar-X dualpol stripmap scenes used
were acquired around 00:49:46 UTC on the 24th and around
06:50:40 UTC on the 25th of December 2019. These have
a pixel spacing of 6.6 meters. It should also be noted that
at an incidence angle of 55°, these images are taken outside
of full performance range. In this time frame (2019-12-24-
07:40:00 to 2019-12-25-15:40:00 UTC) The Polarstern had
drifted from 113.49° lon, 86.63° lat to 115.12° lon, 86.63°
lat.

Here we use the rapid release ALS data that has been pro-
duced during the campaign without the final and precise iner-
tial processing of the INS/GPS data. Thus the data includes
uncertainties in the surface elevations manifesting in elevation
gradients. These gradients are apparent to be non-physical as
they do not match up at intersecting segments. An example
of this can be seen in (Fig. 1). Also some inaccuracies seen
as periodic surface undulations can be observed particular at
the edges of measurement segments. These were masked out
by considering only the centre of segments. Some additional
filtering was performed manually to combat these artefacts.

3. PRODUCT MATCHING

The ALS and SAR scenes to be matched have not been ac-
quired at the same time. Thus, due to drift, simple geolo-
cation is not enough to obtain reasonable matching of prod-
ucts. To overcome this, both measurements are converted into
MOSAICs local FloeNavi Coordinate System (Fig. 2). Now
the different measurements can be matched. However, one
should note, that this assumes the driftfield to be spatially in-
variant in the entire area by extrapolating the Polarstern drift



(a) Elevation measurement (b) Extracted std. deviation

Fig. 1. Example of ALS artefacts of incomplete processing
(a) and how local standard deviation is mostly unaffected by
these effects (b)

vector to a constant drift field. This means that drift correction
is applied equally for each point at a given time and so real
relative motion of the surrounding ice can not be corrected for
and is a potential cause of error.
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Fig. 2. Flowchart for the matching of ALS and TerraSar-X
(TS-X) data. Coordinate systems are TSX pixel coordinates
[TSX] and FloeNavi coordinates [FNXY]
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The process of matching starts by converting both mea-
surements geographic coordinates to MOSAICs internal co-
ordinate system, named FloeNavi coordinates. A map is com-
puted, which maps from FloeNavi coordinates to the satellite
scenes pixel coordinates. It is used to convert the ALS coor-
dinates to satellite pixel coordinates. Now every point of ALS
data has an assigned pixel coordinate of the satellite product.
As the ALS data has a significantly higher resolution, multi-
ple ALS data points will be mapped to the same TS-X pixel.
For an illustration of the quality of matching, the mean over
all ALS points pertaining to the same pixel is computed (Fig.
3). For a roughness estimate the standard deviation is used
(Fig. 1), as in [6].

4. EXTRACTION OF LABELS

The actual ALS measurements itself are not used as ground
truth for the CNN model - this would be very difficult with
the artefacts in the measurements discussed in (sec. 2). In-
stead, the standard deviation of all ALS data points mapped
to the same SAR pixel is computed to obtain a surface rough-
ness. To derive labels the std. deviation is split into three

Fig. 3. Examples of quality of matching. Brighter strips
are from the ALS measurements, darker backgrounds are the
satellite products’ backscatters.

classes of roughness, which makes it easier to gauge the mod-
els performance visually and relates more closely to the ice
classification that is planned in the future. The probability
density function (PDF) of the deviations (Fig. 4) has no ap-
parent splits. One thresholds used for classification is chosen
to be near the inflection point of the PDF peak, as an esti-
mate for level ice. The deformed ice class threshold is chosen
so that manually discerned frozen over leads fall entirely into
this class and make no contribution to the heavily deformed
ice. The classes are defined as seen in (Table 1).
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Fig. 4. Estimated probability density function (PDF) for all
standard deviations measured. Ice classes are colour coded as
per (Table 1).

Initialization ‘ name std. dev. o [cm] colour
LI level ice o <3.5 magenta
FI deformed ice 3.5 <o <125 yellow
HDI heavily deformed ice 12.5 < o red

Table 1. Table of class definitions for data labels used as
ground truth to train the model.

The classes were also smoothed with a small Gaussian
filter for more meaningful spatial separation of classes. The
classes generated from the flight on the 24th are shown in (Fig
5).



Fig. 5. Classes generated from the ALS scene on the 24th of
December. The background is the HH backscatter from the
corresponding satellite scene. Class definitions can be seen in
(Table 1).

5. CLASSIFICATION

The model used for classification is a deep convolutional net-
work built and trained in tensorflow, which is fed with four
inputs for every pixel to be classified.

(1) The surrounding 7 x 7 pixel patch of the full resolution
TS-X scene in four channels (HH, VV, HH/VV, HH-VV),
normalised using a tanh function and then stretched to the
value range [0, 255].

(2) The surrounding 32 x 32 pixel patch of the TS-X scene
down-sampled by a factor of 7 (full resolution patch size) in
four channels (HH, VV, HH/VV, HH-VV), normalised using
a tanh function and then stretched to the value range [0, 255].
(3) The entire scene resized to 64 x 64 pixels, normalised
using a tanh function.

(4) List of incidence angle and the stretching factors of inputs
1. and 2. (minimums and maximums of those patches).

A plot of the network’s graph can be seen in (Fig 6). The
polarisation features HH/VV and HH-VV were chosen, as
they have shown promise for ice type classification in the past
[7]. As 2D convolutional layers cannot learn these inter-layer
operations, it seems prudent to include them manually.

The data is randomly split into mutually exclusive training
and validation sets of 1300000 and 20000 samples respec-
tively. The model achieves 61.5% accuracy on training and
59% accuracy on validation data. The results per class on un-
seen validation data are shown in a table below (Table 2). We
want to note here, that we also attempted to train a VGG-16
style architecture with 32x32 patches as input, but this net-
work failed to converge to a solution, not surmounting .33
accuracy in training.

A discrete classification of the entire scene from the 24th of
December is is shown below (Fig. 7).
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Fig. 6. Plot of the CNN model used for classification. See 5
for input definitions

LI DI HDI
LI | 64.01% 26.60% 9.39%
DI | 27.72% 39.23% 33.05%

HDI | 5.31% 23.95% 70.75%

Table 2. Table showing the percentage of networks’ predicted
classes (cols) for all ground truth labels (rows) on unseen data.
For example 26.6% of data points of level ice (LI) were incor-
rectly predicted to be deformed ice (DI).

6. DISCUSSION

The results of the classifier are not ground breaking purely
from a numerical standpoint. However, there are some aspects
that need to be considered when drawing conclusions from
our models performance. First of all SAR imagery’s object
resolution is not as big as pixel resolution. Secondly, next to
surface roughness, volume scattering plays a significant role
to radar response as well. This however, is not reflected in
the training labels and is impossible to gauge from contextual
data. Thus, we expect the model to perform better in regions
were volume scattering is suppressed, such as lossy mediums
like young ice with higher salinity and low freeboard, or in
strongly deformed regions, where surface backscatter domi-
nates. Finally, the elevation deviation domains have no mean-
ingful separation in (Fig. 4). Thus we need to expect some
mixing between those classes to occur naturally, especially in
the deformed ice class (class ii).

Looking at the table of results (Table 2), our expectations



Fig. 7. Classified satellite scene from the 24th of December.
Class definitions can be seen in (Table 1). The right hand side
shows the HH backscatter.

come to fruition rather accurately. We see meaningful sepa-
ration between rough and smooth ice, whilst separation from
the deformed ice class (ii) proves difficult. This is underlined
by (Fig. 7), where smooth magenta regions are well identified
and correspond to dark regions in the satellite scenes. The
speckling of other classes of these regions is probably due
to ridges and deformations that are not easily visible in the
satellite image, but are discernible from the ALS data used
for training (Fig. 5).

7. CONCLUSION

The reasons for the models shortcomings in some regions can
be well explained by physical features of the ice and the na-
ture of these measurements. The success in separation be-
tween some of these classes and consistent extrapolation to

unseen data, even with just two scenes, make reasonable, that
we will be able to define and extrapolate more comprehen-
sive ice classes from the ALS data under the inclusion of free
board heights, in addition to surface roughness, with the final
science release of the ALS data. These classes are expected
to benefit a lot more from the inclusion of contextual data
in our model, than the pure estimation of surface roughness
does. It is clear that the matching of products is good enough
to extract meaningful data. Classified scenes such as (Fig.
7) inspire confidence, that autonomous ice classification from
SAR trained with ALS data will perform competitively and
be able relate physical properties of sea ice to SAR imagery
consistently.
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