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ABSTRACT 

 

To better characterize the temporal dynamics of vegetation 

biophysical variables, a variety of automated in situ 

measurement techniques have been developed in recent 

years. In this study, we investigated automated digital 

hemispherical photography (DHP) and wireless quantum 

sensors, which were installed at two sites under the 

Copernicus Ground Based Observations for Validation 

(GBOV) project. Daily estimates of plant area index (PAI) 

and the fraction of absorbed photosynthetically active 

radiation (FAPAR) were obtained, which realistically 

described expected vegetation dynamics. Good 

correspondence with manual DHP and LAI-2000 data 

(RMSE = 0.39 to 0.90 for PAI, RMSE = 0.07 for FAPAR) 

provided confidence that the investigated approaches can 

deliver data of comparable quality to traditional in situ 

measurement techniques. 

 

Index Terms— DHP, FAPAR, GBOV, LAI, PAI 

 

1. INTRODUCTION 

 

In situ measurements of vegetation biophysical variables are 

needed in agricultural and forest monitoring, and for the 

validation of satellite products, which are used in a range of 

downstream applications. Because periodic field campaigns 

are unable to provide detailed information on vegetation 

temporal dynamics, in recent years, a variety of automated 

measurement techniques have been developed [1]–[5]. In this 

study, we investigate automated digital hemispherical 

photography (DHP) and wireless quantum sensors installed 

under the Copernicus Ground Based Observations for 

Validation (GBOV) project (https://land.copernicus.eu/ 

global/gbov). Their potential for monitoring plant area index 

(PAI) and the fraction of absorbed photosynthetically active 

radiation (FAPAR) is assessed, as is their utility for 

decametric satellite product validation. 

2. MATERIALS AND METHODS 

 

2.1. Automated DHP 

 

An automated DHP system was deployed at Hainich National 

Park, Germany (51.0794°N, 10.4532°E), in August 2019 

(Figure 1). The site is characterized by old-growth beech 

forest. The automated DHP system consisted of two modified 

Harbortronics Cyclapse time-lapse digital cameras, each 

comprising a waterproof housing with acrylic dome, a 

DigiSnap Pro intervalometer, and a Canon EOS 1300D 

digital single-lens reflex (DLSR) camera equipped with a 

Sigma 4.5mm F2.8 EX DC fisheye lens. Power was provided 

through a mains supply available at the site, and using a 

cellular modem, acquired images were automatically 

transferred to a remote server via file transfer protocol (FTP). 

The set of two cameras was mounted on a steel pole 1.3 m 

above the ground, in the centre of a plot routinely sampled 

under the Integrated Carbon Observation System (ICOS) 

programme. To capture both the understory and overstory, 

one camera was oriented directly upwards, whilst the second 

was oriented directly downwards (Figure 1). 
 

  
 

Figure 1: Automated DHP system deployed at Hainich 

National Park, Germany (left) and example upwards- (top 

right) and downwards- (bottom right) facing images. 
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Following the approach of [6], each camera was 

configured to collect raw images every 30 minutes between 

05:00 and 21:00 local time, ensuring images close to sunrise 

and sunset were captured. To derive plant area (PAI), raw 

images were classified as the vegetation canopy or its 

background. The classification algorithms of [7] and [8] were 

adopted for upwards- and downwards-facing images, 

respectively. Once classified, each image was split into zenith 

and azimuth bins of 10°. PAI was calculated as 

 

𝑃𝐴𝐼 = 2∑ − ln𝑃(𝜃𝑖)
𝑛
𝑖=1 cos 𝜃𝑖 sin 𝜃𝑖 d 𝜃𝑖  (1) 

 

where ln 𝑃(𝜃𝑖) is the mean of the natural logarithm of gap 

fraction values over all azimuth bins at zenith angle 𝜃𝑖 (± 5°) 

[9]. By taking the mean of the natural logarithm of gap 

fraction values, the effects of foliage clumping were 

accounted for according to [10]. 

 To suppress spurious values and noise caused by 

variations in illumination conditions, data screening of the 

resulting PAI time-series was needed. In a previous study [6], 

data were successfully screened by selecting the maximum 

value in each day. In this study, we adopted an alternative 

data screening approach. For upwards-facing images, the PAI 

value closest to sunset was selected [11], whereas for 

downwards-facing images, the mean PAI between 11:00 and 

13:00 local time was calculated to suppress shadows [12]. 

 

2.2. Wireless quantum sensors 

 

A wireless quantum sensor network was deployed at the 

Valencia Anchor Station, Spain (39.5708N, 1.2882E), in 

March 2020 (Figure 2). The site is characterized by 

Mediterranean vineyard vegetation. The sensor network 

consisted of 12 nodes, each comprising an Environmental 

Sensing Systems solar-powered data logger and four Apogee 

Instruments SQ-110 quantum sensors. Each data logger was 

equipped with a wireless radio, enabling transmission of data 

to a base station. The base station aggregates the data 

received from each node, and using a cellular modem, 

automatically uploads these data to a remote server. 

 

     
 

Figure 2: Wireless quantum sensor network deployed at the 

Valencia Anchor Station, Spain. 

The 12 nodes were distributed over a 60 m x 60 m 

plot, with an even number of nodes located within and 

between rows to reflect the mixture of vegetation and bare 

soil experienced at the site (Figure 2). At each node, a pair of 

sensors was positioned above and below the canopy, enabling 

the measurement of incoming and outgoing terms. Each node 

was configured to collect PAR data every 5 minutes. Using 

these data, we determined 4-flux instantaneous FAPAR as 

 

𝐹𝐴𝑃𝐴𝑅4−𝑓𝑙𝑢𝑥 =
𝐼𝑇𝑂𝐶
↓ −𝐼𝑔𝑟𝑜𝑢𝑛𝑑

↓ +𝐼𝑔𝑟𝑜𝑢𝑛𝑑
↑ −𝐼𝑇𝑂𝐶

↑

𝐼𝑇𝑂𝐶
↓   (2) 

 

where 𝐼𝑇𝑂𝐶
↓ , 𝐼𝑇𝑂𝐶

↑ , 𝐼𝑔𝑟𝑜𝑢𝑛𝑑
↓ , and 𝐼𝑔𝑟𝑜𝑢𝑛𝑑

↑  represent the mean 

incoming and outgoing PAR values recorded by all nodes at 

the top of canopy and ground at 10:00 local solar time (± 15 

minutes). We also calculated a 2-flux estimate as 

 

𝐹𝐴𝑃𝐴𝑅2−𝑓𝑙𝑢𝑥 = 1 −
𝐼𝑔𝑟𝑜𝑢𝑛𝑑
↓

𝐼𝑇𝑂𝐶
↓    (3) 

 

2.3. Manual sampling 

 

To verify the estimates of PAI and FAPAR provided by the 

automated DHP system and wireless quantum sensor network 

at the two sites, additional field data collection was carried 

out throughout the growing season. This involved manual 

sampling at 13 (21) locations within the 40 m x 40 m (60 m 

x 60 m) plot containing the automated DHP system (wireless 

quantum sensor network). DHP data were processed as 

described in Section 2.1 to estimate PAI. FAPAR was 

approximated as the instantaneous black-sky fraction of 

intercepted photosynthetically active radiation (FIPAR), 

which was calculated as 

 

𝐹𝐼𝑃𝐴𝑅 = 1 − 𝑃(𝜃𝑆𝑍𝐴)    (4) 

 

where 𝑃(𝜃𝑆𝑍𝐴) is the mean gap fraction over all images and 

azimuth bins at the solar zenith angle at 10:00 local solar time 

(± 5°) [13], [14]. Additionally, at Hainich National Park, LI-

COR LAI-2000 data were also acquired and processed. 

 

3. PRELIMINARY RESULTS 

 

3.1. PAI at Hainich National Park 

 

The data screening approach described in Section 2.1 

appeared successful in suppressing the majority of noise in 

the PAI data, providing time-series that reflected expected 

vegetation dynamics, realistically capturing the end of the 

2019 growing season, the senescent period, and the start and 

peak of the 2020 growing season (Figure 3). The understory 

layer was found to have a considerable contribution to the 

total PAI, particularly during the early spring, highlighting 

the importance of characterizing both the understory and 

overstory when collecting in situ data. Overstory PAI values 



appeared slightly lower in the summer of 2019 than 2020. An 

explanation is that during installation, the camera was set to 

default exposure metering, whereas in October 2019, it was 

adjusted to ‘centre-weighted average’ metering, which is 

more appropriate for circular fisheye images. For both layers, 

the automated DHP data demonstrated good agreement with 

the manual DHP data acquired at 13 sampling locations in the 

surrounding 40 m x 40 m plot (RMSE = 0.61 to 0.90). For the 

overstory, good agreement with LAI-2000 data was also 

observed (RMSE = 0.39). 

 

 

 
Figure 3: Time-series of PAI derived from the upwards (top) 

and downwards (bottom) facing automated DHP systems at 

Hainich National Park, in addition to estimates of PAI 

derived from manually acquired DHP and LAI-2000 data 

over the surrounding 40 m x 40 m plot on several dates. 

 

3.2. FAPAR at the Valencia Anchor Station 

 

The wireless quantum sensor network was able to realistically 

capture expected vegetation dynamics at the Valencia Anchor 

Station, including the senescent period, start, and peak of 

2020 growing season (Figure 4). Despite the bright soil 

background experienced at the site, very little difference 

between the 4-flux and 2-flux estimates of FAPAR was 

observed. As similar results were recently obtained by [15], 

this is a useful finding for planning future validation 

activities, given the extra cost and effort associated with 4-

flux measurements. Again, good correspondence was 

achieved with the manual DHP data collected over the 60 m 

x 60 m plot containing the sensor network (RMSE = 0.07). 

 

4. DISCUSSION AND CONCLUSION 

 

4.1. Utility of automated instrumentation 

 
Figure 4: Time-series of 2-flux and 4-flux FAPAR derived 

from the wireless quantum sensor network at the Valencia 

Anchor Station, in addition to estimates of FIPAR derived 

from manually acquired DHP images over the 60 m x 60 m 

plot on several dates. 

 

The preliminary results presented in this study highlight the 

potential of automated, permanently deployed 

instrumentation to provide rich temporal characterization of 

vegetation dynamics over spatial extents useful for 

decametric satellite product validation. The daily time-series 

offered by such systems mean that contemporaneous in situ 

data are available whenever cloud-free satellite images are 

acquired over equipped study sites. The fact that the PAI and 

FAPAR values derived from our automated DHP system and 

wireless quantum sensor network achieved good 

correspondence with manual DHP and LAI-2000 data 

provides confidence in their ability to deliver data of 

comparable quality to traditional in situ measurement 

approaches at the plot scale. 

 When compared to periodic field campaigns, 

automated, permanently deployed instrumentation will 

enable considerable progress to Stage 3 of the Committee on 

Earth Observation Satellites (CEOS) Working Group on 

Calibration and Validation (WGCV) Land Product 

Validation (LPV) hierarchy, in which ‘uncertainties are 

characterized in a statistically robust way over multiple 

locations and time periods representing global conditions’ 

[16]. Having said this, since permanently deployed 

instruments can only cover a limited number of locations, it 

is clear that periodic field campaigns will continue to play an 

important role, enabling biases (e.g. due to inadequate spatial 

representativeness) to be identified and corrected for. 
 

4.2. Future work 

 

Although our preliminary results demonstrate the potential of 

automated DHP and wireless quantum sensors for continuous 

vegetation monitoring and satellite product validation, there 

is considerable opportunity for future work. For example, 

whilst a time-series of PAI was derived from the automated 

DHP system, a key advantage of the approach is the ability to 

derive other biophysical variables including FIPAR and the 

fraction of vegetation cover (FCOVER) [13], [14]. Similarly, 

approaches to estimate PAI from wireless quantum sensors 

(e.g. using data collected at a solar zenith angle of 57.5°, or 



by making use of ancillary data on canopy leaf angle 

distribution) are also available [3], [5], and should be 

explored. Further evaluation of the automated DHP 

processing methods could also be envisaged (e.g. through 

comparison with a subset of manually classified images). 

Additionally, differences in the definition of in situ and 

satellite-derived quantities (e.g. PAI vs. LAI, green FAPAR 

vs. total FAPAR) should be considered. 

Though already useful for validating decametric 

satellite products such as those from Sentinel-2, to make the 

temporally continuous in situ data provided by the systems 

described in this study useful for validating moderate spatial 

resolution satellite products, appropriate upscaling 

approaches are required. Recent progress using multi-

temporal transfer functions and radiative transfer model-

based approaches has been made [17]–[19], and future work 

will evaluate these methods over our study sites. 

In addition to maximizing the utility of the data 

already being collected, there is also a need to expand the 

geographical coverage of such installations. Several new sites 

will be equipped with automated DHP systems and wireless 

quantum sensor networks in 2021, with a particular focus on 

under-characterized regions. These include tropical woody 

savanna (Litchfied, Australia) and temperate Eucalypt forest 

(Wombat, Australia) sites. 
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