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ABSTRACT

We present a dataset consisting of OpenStreetMap imagery
and corresponding building footprint labels. Multiple label
sets are provided, each containing a different type of label
noise. The purpose of the dataset is to enable a systematic
analysis of different label noise types in the earth observa-
tion domain and to provide a benchmark dataset for noise re-
moval techniques. We also present some preliminary results
from experiments on the effect of different label noise types
on model performance.

Index Terms— label noise, building footprints, dataset,
Deep Learning, OpenStreetMap

1. INTRODUCTION

In the field of Earth observation, data labels for training and
testing Machine Learning applications are often subject to
noise. The size of the available datasets usually makes it in-
feasible to annotate features by hand, and so automatic meth-
ods or existing maps and databases are utilized to assign la-
bels to the data. In most cases, these approaches are to some
degree imperfect and cause the labeling process to introduce
noise in the data. An example for such a database is the pop-
ular OpenStreetMap project (OSM) which mainly includes
information on streets and buildings, but also other kinds of
geographic information on a global scale. When relying on
these types of annotations, it is important to be aware of the
impact that the noise in the labels has on model performance.
Currently, the impact of label noise on the performance of
deep neural networks is still unclear. Most of the existing re-
search focuses on image classification, whereas for the case
of semantic segmentation, the role of label noise is not well
understood. Conducting research on semantic segmentation
is potentially even more challenging since each image is as-
signed multiple labels, so that different patterns of labels and
of label noise can arise within an image. Therefore, the differ-
ent kinds of label noise that can be encountered in semantic
segmentation are more numerous and complex than the noise
types in image classification.

Understanding the role of label noise in training data for se-
mantic segmentation requires datasets that allow the study of
different noise types independently from each other. Unfortu-
nately, creating such datasets is difficult for the same reasons
that lead to the prevalence of label noise in the first place:
The lack of reliable, quality-controlled labels. To circumvent
this problem, we create a dataset that is comprised not of real-
world imagery, but of OSM imagery and corresponding build-
ing footprint labels 1. By extracting the imagery as well as the
labels from the same source, we are able to ensure that there
is no label noise in the original labels, and subsequently cre-
ate further label sets where we can accurately control the type
and amount of label noise.

2. RELATED WORK

Label noise is a common problem in classification tasks that
has already been extensively studied for general purpose ma-
chine learning [1]. When it comes to image classification in
Deep Learning, there also exists a number of works that ana-
lyzed the role of label noise on model performance, although
the findings are inconclusive. Zhang et al. showed that deep
neural networks for image classification are able to memo-
rize the training data completely, and demonstrated this by
fitting a deep neural network to entirely random labels [2].
An explanation as to why this behaviour does not necessar-
ily hamper model performance was later delivered by Arpit et
al., who found that DNNs usually fit to clean labels first and
only later begin to memorize noise in the data [3]. This was
also confirmed by Arazo et al. [4]. Rolnick et al. showed that
deep neural networks can perform very well at image classi-
fication tasks even when the training data is corrupted with
huge amounts of noise [5]. In contrast to that, Wang et al.
and Amid et al. reported clearly deteriorating accuracy val-
ues when introducing label noise in their datasets [6, 7].
For the field of semantic segmentation [8] however, there ex-
ists less research on the role of label noise. To our knowledge,
the most extensive analysis on the impact of label noise on
model performance was carried out by Zlateski et al. who

1https://zenodo.org/record/4446737#.YAvVEsIxk5k



created a perfectly labeled synthetic dataset of street view
scenes, and subsequently produced coarsened labels of lower
quality from the initial perfect labels [9]. Their findings are
that model performance increases with label quality and with
size of the training dataset. Our approach aims at enabling a
similar analysis, and we believe that the domain change from
street view to aerial images can yield additional useful in-
sights, due to different noise patterns between those domains.
Based on the work of Zlateski et al., Acuna et al. created sev-
eral versions of an image dataset with varying levels of label
noise and measured the performance of models for semantic
segmentation of boundaries on these datasets. They reported
a clearly declining performance with increasing noise levels
[10].
Furthermore, despite of a number of at pixel-level annotated
datasets being available [11, 12, 13, 14, 15], to our knowledge
no dataset has been published yet that provides known types
and amounts of label noise alongside clean labels to enable a
systematic study of different label noise types.

3. GENERATING THE DATASET

The locations for the training and testing data were selected
by taking the coordinates from 24,344 globally distributed
cities that are either capitals or have a population greater than
15,000 according to the GeoNames database [16]. Image
data from OSM is available in the form of rectangular tiles at
different zoom levels and can be downloaded from the OSM
tile server [17]. For each of the coordinates, one OSM tile
with a width of 0.005 degrees of longitude or roughly 500
meters was downloaded from the OSM tile server. Labels
were created by downloading all objects within the tile coor-
dinates that were tagged as buildings from the Overpass API
[18]. Since the data that is rendered by the OSM tile server is
exactly the same as the data that is queried by the Overpass
API (at least apart from changes within a few minutes), we
can assume that using the former as labels for the latter will
result in a largely error-free groundtruth. From the initial
24,344 images, all images that contained less than 20 build-
ings were excluded, resulting in 12,316 remaining images.
In addition, aerial imagery from Google Maps and corre-
sponding OpenStreetMap building labels were downloaded
for 100 European cities to provide an opportunity for com-
parison with real-world imagery. The following analyses in
chapter 4 only focus on the OpenStreetMap imagery.
Aside from the original labels, three more label sets were
created by modifying the original ones, each containing a
different type of noise. The modification for the first of these
label sets consisted of flipping the value of a certain percent-
age of pixels in the original image, thereby inserting random
noise. This type of noise is not very likely to occur in real-
world data, but can serve as a baseline to compare with other
noise types. The second modification was the removal of 10%
of the existing objects from the original dataset, referring to

a common issue when OSM or other sources of Volunteered
Geographic Information (VGI) are used for label generation
that do not include the complete set of labels. The last label
set was modified by adding rectangular shapes in arbitrary
locations, simulating the case that buildings are included in
the labels that do not appear in the actual image. This type
of errors is also rather uncommon, but could for example ap-
pear when an outdated map is used for label generation that
includes buildings that were torn down in the meantime. To
make the amount of noise between those label sets compara-
ble, it was attempted to make the total number of noisy pixels
in each image the same over all three label sets. While this
goal was achieved for the first and the second label set, the
third one with the added objects can have a lesser number of
noisy pixels if the locations of the added buildings coincide
with the locations of already existing buildings. Examples for
clean and noisy labels as well as an OSM tile are shown in
figure 1.

(a) (b)

(c) (d) (e)

Fig. 1. Example of one sample in the generated dataset; (a):
OSM imagery; (b): clean labels; (c): label with random noise;
(d): label with deleted buildings; (e): label with additional
buildings

4. FIRST ANALYSIS ON THE DATASET

To get an insight if and how different types of label noise af-
fect the performance of a DNN in our setting, we trained a
DeepLabV3+ model for semantic segmentation [19] on the
dataset. Since previous works suggest that noise increases
the required amount of training data [9], we also trained the
model on subsets of different sizes of our dataset. Those sub-
sets were further split into 80% training and 20% validation
data. Validation was always performed with respect to the
clean labels, whereas training was conducted on each of the
label sets separately. We chose the binary crossentropy as a
loss function and used a batch size of 8 and the Adam opti-



mizer with decaying learning rate for training. Furthermore,
dropout was performed before every convolutional layer to
avoid overfitting. All experiments were repeated 10 times.
Figure 2 shows the development of the mean accuracies of
those 10 repetitions over the training epochs for all the label
sets on the highest training size of 9600 images. As expected,
the best accuracy is always achieved on the clean dataset. In-
terestingly, the noisy labels behave very differently: The label
set with removed buildings behaves most similar to the clean
label set in that it displays a saturating curve and shows very
low fluctuations between different runs. However, the curve
saturates faster than the one for the clean labels so that the
accuracy gap between clean and noisy labels increases with
the epochs. In the end, it scores about half a percentage point
worse than the clean label set. In contrast to that, the label
set with the added buildings reaches its peak accuracy rela-
tively early at epoch 20 and falls down after that again. In the
following epochs, it also shows relatively high fluctuations
between the different repetitions. This is intuitively surpris-
ing, since the labels sets with removed and added buildings
are semantically quite similar: Both contain objects in the
training images that are not in the labels and vice versa, so
the big difference in the training behavior between those la-
bel sets is unexpected for us. A reason for this could lie in the
imbalanced class distribution of the dataset: Only about 20%
of all pixels in the clean training data are labeled as build-
ings, so adding false positives to a class that already has few
samples might have a bigger impact than doing the same to a
class with lots of samples. At last, the random noise label set
shows a very similar development as the clean label set, ex-
cept it scores always between a half and one percentage point
worse and shows relatively high standard deviations that be-
come smaller in the later epochs.
Figure 3 shows the mean accuracies after 100 epochs of train-
ing with different training sizes for all the label sets. For all of
the noisy label sets, the increase of the training size from 2000
to 4000 samples seems crucial for getting reasonable results,
after that the improvements in accuracy are only marginal.
This observation is in line with other works about the impact
of sample size on model performance with noisy labels [5].
Furthermore, the fluctuations between different runs are quite
high when training with the smallest training size of 2000
samples. In particular, the standard deviation of the label set
with removed buildings is extremely high at this sample size,
although at all other sample sizes the standard deviation is al-
most zero. The unusually high standard deviation stems from
a few outliers within the 10 runs that produced high training
accuracies, yet very low validation accuracies. Our first guess
on explaining this behaviour is that in those cases the training
data was merely memorized and no generalization capability
beyond the training set was reached.

Fig. 2. Development of accuracies over training epochs for
the different label sets, trained on 9600 images. Vertical lines
show the standard deviation from 10 repetitions.

Fig. 3. Accuracy development of the different label sets de-
pending on the size of the training data, after 100 epochs of
training. Vertical lines show the standard deviation from 10
repetitions.

5. CONCLUSION AND OUTLOOK

Our dataset can serve as a starting point for understanding
the role of label noise in earth observation as well as pro-
viding a ground truth for evaluating techniques for detecting
and removing label noise. Our short analysis already revealed
strong differences in the training behavior on different types
of noisy labels, suggesting that more insights can be gained by
developing this work further. Future works could include the
creation of similar datasets for other geospatial features like
roads, and the addition of further noise types that are com-
mon in remote sensing, for example when labels are slightly
rotated or shifted away from their original position.
The fact that the dataset only consists of artificial map data is



a serious limitation, since observed results cannot automati-
cally assumed to be transferable to real-world imagery. How-
ever, the similarity of real-world imagery to OpenStreetMap
is probably far bigger than to e.g. medical imagery or any
other of the the popular computer vision domains where re-
search about the role of label noise has already been done to a
greater extent. This makes our dataset a valuable resource on
the middle ground between domain similarity to earth obser-
vation and practical usability when it comes to comprehend-
ing the role of label noise in remote sensing.
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