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ABSTRACT

This article proposes a method based on the temporal clo-
sure of the displacement measurement’s network. The aim is
to extract short-term glacier velocities and to use data redun-
dancy to reject outliers and reduce uncertainty. By using all
the available displacement measurements, we retrieve a dis-
placement time series between consecutive observation dates
by means of an inversion. The proposed inversion method is
an Iterative Weighted Least Square (IWLS) with a regulariza-
tion on the discrete derivative of displacements. We apply our
method to a glaciers velocity data-set covering Fox Glacier in
the Southern Alps of New Zealand.

Index Terms— Glacier, velocity, time series, fusion

1. INTRODUCTION

Velocity maps are necessary to precisely monitor ice dynam-
ics, to infer sub-glacial processes and/or ocean forcing, and
to derive other products such as mass-balance or strain rates
when the amount of data is sufficient. Nowadays, a lot of
satellite image derived scene-pair ice velocities tend to be
available online [1, 2] or on-demand [3]. This amount of data
is complex to analyze since velocity measurements span dif-
ferent temporal baselines. Indeed, velocities covering small
temporal baselines are close to the temporal derivative of the
position whereas long temporal baseline velocities approxi-
mate the mean velocity over the considered period. Moreover,
the uncertainty of velocity measurements differs. In case of
small temporal baselines, the uncertainty can be large due to
the small displacement magnitude, while in case of long tem-
poral baselines, the uncertainty mainly results from the sur-
face change between image acquisitions.

Some authors chose to overcome this problem by picking
small or long temporal baselines depending on their interest
(small temporal baselines for intra-annual or long temporal
baselines for inter-annual studies) [4]. This implies having
enough data which cannot always be possible, especially in
mountain areas. Therefore, other authors suggested integrat-
ing a regression function to fit displacement measurements [5]
which requires a priori knowledge of the displacement behav-
ior.

In this paper, we propose a temporal inversion method
based on the temporal closure of the displacement measure-
ment’s network. This kind of approach was originally devel-
oped for InSAR time series [6]. Later, it has been applied
to SAR speckle-tracking [7] and optical cross-correlation dis-
placement measurements [8]. However, it has mostly been
applied to almost linear displacement in case of sufficient re-
dundancy. Moreover, taking the uncertainty of different dis-
placement measurements into account remains an open ques-
tion. Here, the main objective is to deal with the cases of
more complex displacement behavior (e.g. seasonal variabil-
ity) and without large redundancy for the whole period under
consideration. We suggest to use all the available displace-
ment measurements to obtain a displacement time series be-
tween consecutive observation dates. For that, we propose
1) an IWLS with a regularization on the discrete derivative
of the displacement and 2) an appropriate weighting function,
inspired from [9], for different displacement measurements in
case of unknown uncertainty. The proposed method is illus-
trated on the Fox Glacier situated in the Southern Alps of New
Zealand. The final goal is to extract the short-term glacier ve-
locity evolution with reduced uncertainty as in [10].

Fig. 1: Illustration of the temporal closure of the displace-
ment measurement’s network. The vector Y corresponds to
the observed displacements. The vector X stands for the dis-
placement time series between consecutive dates. A is the
design matrix linking the vectors X and Y.

2. DATA AND STUDY AREA

The study area is the Southern Alps of New Zealand. We
apply the proposed method to the Fox glacier, a fast-flowing,
temporal maritime glacier [11, 12].



The considered data-set is from [3]. It contains velocity
measurements computed with a modified version of the cross-
correlation algorithm Ampcor from NASA. A first outlier-
removal has been carried out. Pixel offsets that deviate more
than three units from the offsets filtered by a 9 pixels x 9 pix-
els median filter have been removed. We consider Sentinel-2
data having a spatial resolution of 10 m and a repeat period
of 5 days. The temporal baselines are ranging from 5 to 100
days and from 330 to 400 days. The resulting velocity maps
have a 50 m spatial resolution.The measurements cover the
period from October 2016 to December 2018.

3. METHODOLOGY

3.1. Temporal closure of displacement measurement’s
network

The proposed method is a pixel-based approach. The key
principle relies on the redundancy of the observed displace-
ment measurement’s network. It uses the fact that displace-
ments are additives to infer a displacement time series be-
tween consecutive dates. This is known as the Leap Frog
formulation. For example, in the Figure 1, the displacement
between the dates t0 and t1 and the dates t0 and t3 are overlap-
ping. The relation between the Leap Frog time series X (of
dimension p) and the observed displacements Y (of dimen-
sion n) is given by the design matrix A (of dimension n× p).
By solving the equation AX = Y , the minimized square dis-
tance between the displacements Dt0−t1 inferred from both
Dt0−t1 and Dt0−t3 is computed.

Two configuration for the Leap Frog time series X can be
considered: 1) displacements between consecutive dates in-
cluded in Y (cf. Figure 1) , 2) displacements between consec-
utive dates with a regular time span (e.g. the satellite repeat
cycle). If the number of data in Y is not sufficient, the sys-
tem is more likely to be ill-posed in this second configuration.
Here, we present results from the first configuration.

3.2. Inversion

To solve the equation AX = Y , we propose an Iterative
Weighted Least Square (IWLS) approach. A regularization
term on the discrete derivative of the leap frog velocities can
be added as done in [8] assuming that ice velocities have a
low temporal variability on a short time scale (i.e. with a
small temporal sampling). That is to say, we minimize the
cost function:

arg min(||W (AX − Y )||2 + ||ΓX||2) (1)

X̂ = (ATWA+ ΓT Γ)−1ATWY (2)

where Γ is a p× p matrix representing the discrete derivative
operator andW a n×nmatrix standing for the weight given to
each value in Y . The diagonal element of Γ are Γk,k = 1/∆τ

and the element above the diagonal are Γk,k+1 = −1/∆τ
with ∆τ the temporal sampling.

The solution of the equation is equation 2 using a Singu-
lar Value Decomposition (SVD) when the system is ill-posed
(i.e. n < p) [6].

This approach includes at least two iterations.

Fig. 2: Example of results for a point of coordinate (-
43.532,170.134) situated on Fox glacier. Two outliers that
seem to stand out of the trend are encircled in red and or-
ange in each plot. a) Original data for E-W (Vx) and N-S
(Vy) velocity components. The purple dots represent the cen-
ter between the first and second date of acquisition, the bars
show the temporal baseline of each velocity. b) Internally
studentized-residuals resulting from the first OLS inversion
superimposed on the original data. The color represents its
magnitudes in m/y. c) Results from the IWLS inversion.

3.2.1. First iteration

Indeed, the observed displacements are heteroscedastic, i.e.
the variance across elements is different. Therefore, it is rele-
vant to add a weight to each element in Y based on the vari-
ance. The weight vector is W . Because the variance is un-



known, we perform a first Ordinary Least Square (OLS) in-
version (i.e. W = I in equation 1 and 2 ) to retrieve the
internally studentized-residuals vector, an indicator use to de-
tect outliers [9], defined as:

Z =
R

σ
√

1−H
(3)

where R are the residuals (the difference between the recon-
structed input displacements computed with AX = Y and
the original displacements Y ) of dimension n, H the leverage
vector of dimension n, i.e. the diagonal elements of the hat
matrix A(ATWA + ΓT Γ)−1ATW , ·

· the element wise divi-

sion and σ =
∑n

i=1
R2

i

(n−p) the standard deviation of residuals.

3.2.2. Next iteration

Then, a second inversion is performed whereW is defined us-
ing the Tukey’s biweight function, which is a common down-
weight function [9]. The diagonal elements of W are defined
as:

W k,k =

{
[1− (zk,k/c)2]2, |zk,k| < c

0, |zk,k| > c
(4)

where c is a tuning constant which is usually set to 4.685,
producing 95% efficiency at a normal distribution [13].

Then, other Weighted Least Square iterations are per-
formed where W is updated with the result from the previous
iteration. The algorithm stop when mean(|X̂i − X̂i−1|) < δ
where X̂i corresponds to the results of a given iteration and
X̂i−1 the results of the previous one. δ is a predefined thresh-
old, here set to 0.05 m.

On the one hand, by weighting the Least Square inver-
sion, our results tend to be robust to outliers which will have
larger internally studentized-residuals. On the other hand, the
regularization term allows reducing the outliers by decreasing
abrupt variability where the IWLS inversion is weakly con-
strained.

4. RESULTS

4.1. Temporal analysis

The temporal analysis is illustrated on a point situated on
Fox Glacier at location (-43.532,170.134). The W-E and N-S
components (Vx and Vy respectively) of the velocity are plot-
ted in Figure 2a).

The internally studentized-residuals obtained from the
first OLS inversion are shown in Figure 2b). Their values
are higher when the original data appear as outliers such as
the point with a Vx bellow -750 m/y in 2018-02 (red circle)
and the point with a Vy lower than -300 m/y in 2017-12 (or-
ange circle). By using the internally studentized-residuals
as weights in a second inversion, the final results are less
impacted by outliers (cf. Figure 2c).

Furthermore, the internally studentized-residuals could be
used as a proxy of the uncertainty in velocity measurements.
This can be especially of interest concerning glaciers. In-
deed, authors usually access the uncertainty of a velocity map
by computing the standard deviation of displacements on a
stable or slow-moving ground where the displacement value
is known. However, uncertainty can be higher on glaciers
due to a fast-changing surface which can cause decorrelation
and match blunders [1, 3]. This can lead to underestimat-
ing the uncertainty on moving areas. The proposed internally
studentized-residual overcomes this problem and proposes a
more appropriate indicator of the uncertainty on moving ar-
eas.

4.2. Spatial analysis

The spatial analysis is illustrated on a rectangle of 10 ×
10 km² surrounding Fox Glacier (top left hand corner (-
43.565,170.144), bottom right hand corner(-43.565,170,144)).

The the temporal mean velocity of each pixel in the origi-
nal data-set is compared with the IWLS inversion results. The
latter have an averaged temporal baseline of 22 days, there-
fore, temporal baselines lower than 25 days are selected in
the original data-set for comparison. On glaciers, our results
are consistent with the original data-set and previous stud-
ies [11,12] (cf. Figure 3). Furthermore, we find that the mean
velocities on the stable ground are closer to 0 after inversion.
We compute the RMSE of the velocity magnitude on stable

ground as follows RMSE =
√

1
N

∑
(V 2

x + V 2
y ). Vx and Vy

are the velocities recorded for each pixel and each temporal
baseline,N is the length of Vy and Vx (i.e. the number of pix-
els times p). We find an RMSE of 149.3 m/y before inversion
and 82.1 m/y after.

5. CONCLUSION

In this paper, we propose a method based on the temporal clo-
sure of the displacement measurement’s network. The goal is
to infer a displacement time series between consecutive ob-
servation dates from all the available displacements in order
to extract short-term glacier velocity evolution with a reduced
uncertainty. This method takes advantage of the data redun-
dancy and relies on an IWLS algorithm and a regularization
on the discrete derivative of displacements. Moreover, we
proposed the internally studentized-residuals for weighting
the displacement measurements of different quality, which is
of particular interest in case of unknown data uncertainty. We
have shown that our method was robust to outliers. Moreover,
both temporal and spatial analyses reveal that the inversion re-
duces the noise.

A follow-on of this study will be to fuse displacements
from different sensors and to explore the possibility to add
a spatial constraint inside the inversion. In future works, we
will also apply our method to other data-sets and regions.



Fig. 3: Mean velocities for each pixel for a) the W-E component (Vx) of the original velocities b) Vx of the inverted velocities c)
the N-S component (Vy) of the original velocities d) Vy of the inverted velocities. The considered area is a rectangle of 10× 10
km surrounding Fox Glacier (top left hand corner (-43.565,170.144), bottom right hand corner(-43.565,170,144)).
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