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ABSTRACT 
 
With the advent of the golden era of scatterometry, with 
seven scatterometers currently operating in orbit and a few 
others to be launched in the near future, a wide variety of 
scientific and operational applications will certainly benefit 
from consolidated wind retrieval procedures. In particular, 
an important component of the scatterometer wind 
processing is the quality control (QC) procedure. Over the 
last two decades, several QC indicators have been 
developed for C-band and Ku-band scatterometers, and used 
in the operational generation of sea surface wind products. 
Such indicators mostly aim at identifying and filtering 
retrieved wind quality degradation due to high wind 
variability and/or rain contamination effects. As such, the 
different QC indicators may be applied for different 
oceanographic and meteorological applications. The 
methods will be presented at the conference to motivate a 
discussion on their application-dependent use and come up 
with a consolidated view from the different user 
communities. 

Index Terms— Scatterometer, wind, quality control, 
rain, wind variability. 
 

1. INTRODUCTION 
 
Scatterometers are known to provide accurate mesoscale 
(25-50 km resolution) sea surface wind field information 
used in a wide variety of applications, including Numerical 
Weather Prediction (NWP) data assimilation, nowcasting, 
ocean forcing and climate studies. The impact of 
scatterometry in such applications is expected to boost with 
the currently growing scatterometer constellation. In 
particular, the following scatterometers are currently 
operating: the three C-band Advanced Scatterometers, 
ASCAT-A, -B & -C onboard the European Metop-A, -B, 
and -C, respectively; the OSCAT-2 onboard the Indian 
SCATSat-1; the HSCAT-B and HSCAT-C onboard the 

Chinese HY-B and HY-2C, respectively; and the rotating 
fan-beam scatterometer CSCAT onboard the Chinese-
French CFOSAT. Moreover, in the near future, OSCAT-3 
onboard the Indian Oceansat-3 and WINDRAD onboard the 
Chinese FY-3E will also be launched. While the ASCATs 
are operating in C-band with fixed viewing geometry, the 
others are Ku-band with varying viewing geometry (except 
for the upcoming WINDRAD which will operate at both C- 
and Ku-band). 

Within the Committee on Earth Observation Satellites 
(CEOS) virtual constellation of ocean surface vector wind 
project, a particular effort is currently undergoing on the 
standardization/best practices of scatterometer wind 
retrieval approaches for optimized scientific and operational 
applications. An essential component of the scatterometer 
wind processing is the quality control procedure. 
Scatterometers are sensitive to geophysical phenomena 
other than the area or wind vector cell (WVC) mean stress-
equivalent wind and SST [1], such as rain, local wind 
variability, confused sea state, and the radar footprint 
contamination by land or ice. Some attempts were made to 
either correct the radar backscatter for rain contamination 
effects [2], [3] or to use a neural network approach to relate 
the backscatter to the sea surface winds in all weather 
conditions [4], However, these phenomena distort the 
WVC-mean wind signal, leading to poor-quality retrieved 
winds. As such, detection and then correction or elimination 
of poor-quality data is a prerequisite for the successful use 
of scatterometer winds.  

Hence in scatterometry quality indicators are developed for 
flagging poor-quality retrieved winds. Over the past two 
decades, three different flagging methodologies have been 
consolidated: 1) one based on the inversion residual [5]-[7]; 
2) another one based on the local decorrelation of 
neighbouring WVC winds [7]-[11]; 3) and a third method 
based on the consistency between the retrieved wind and 
that obtained in the 2DVAR ambiguity removal step [12], 



[13]. The three QC indicators are presented in Section 2. A 
discussion about the main results of the mentioned 
indicators and their different application domains can be 
found in Section 3. 
 

2. QC INDICATORS 
 
a) MLE 

The inversion residual or Maximum Likelihood Estimator 
(MLE) can be interpreted as the closest distance of the 
scatterometer set of backscatter measurements in a WVC 
(corresponding to the different antenna beams) to the 
Geophysical Model Function (GMF). For example, for a 
given WVC position across the swath, the ASCAT 
measured backscatter triplets (corresponding to the fore, mid, 
and aft beams) are distributed around a well-defined 
“conical” surface and hence the signal largely depends on 
just two geophysical parameters, i.e., wind speed and 
direction. Such cone, as constructed from the so-called 
CMOD7 Geophysical Model Function (GMF) [14], 
represents the best known fit to the measured triplets and 
can in turn be used for Quality Control (QC) purposes. 

In general, the scatterometer measurements lay close to the 
GMF surface (i.e., have low MLE values), further validating 
the wind GMF and low noise characteristics of the 
scatterometer systems. A large inconsistency with the GMF 
results in a large MLE, which indicates geophysical 
conditions other than those modelled by the wind GMF, 
such as rain, local wind variability, etc. As such, the MLE 
provides a good indication for the quality of the retrieved 
winds [5]-[7]. For Ku-band scatterometers, with lower 
signal-to-noise ratio than C-band scatterometers, the 
averaged MLE over the nearest 8 WVCs, MLEm, is a more 
effective QC indicator than the rather noisy MLE [10]. 

b) Singularity analysis 

Singularity analysis is an effective tool to measure the wind 
de-correlation of a particular WVC with its neighboring 
WVCs [9]. The derived singularity exponent (SE) depicts 
the degree of local regularity (spatial gradient) around a 
given WVC for a given signal. The wavelet projections of 
the gradient measurements of the inversion residual (MLE) 
and the retrieved wind components (speed and direction) are 
examined in order to assess the irregularities of 
scatterometer winds. Note that the MLE is a local measure, 
whereas SE is based on spatial derivatives between WVCs 
and are therefore complementary. This is shown in Fig. 1, 
where the largest discrepancies between ASCAT and 
ECMWF winds are found for both large positive MLE 
values and large negative SE values. Note that although 
ECMWF does not resolve spatial gradients on the 
scatterometer scale, a similar pattern is found against buoy 
winds (not shown). In general, SE is particularly effective in 
filtering increased wind variability conditions for both C-

band and Ku-band systems [9], [10], while less effective 
than MLE/MLEm in detecting the presence of rain [10], [11] 
(see Fig. 2). 

 

c) 2DVAR analysis 

The 2DVAR analysis wind field is derived in the 2DVAR 
procedure during the wind product generation, where it 
constructs an optimal wind field from the ambiguous 
scatterometer information and background winds obtained 
from a Numerical Weather Prediction (NWP) model, 
considering empirically-based spatial background error 
structure functions [15]. In the final 2DVAR step, the WVC 
wind vector solution closest to the local 2DVAR field is 
selected as the unambiguous locally observed scatterometer 
wind, with the objective to provide a unique observed wind 
field. A new QC indicator, JOSS, is defined as the local wind 
speed difference of the 2DVAR analysis speed and the 
retrieved (inverted) wind speed. Since the 2DVAR speed 
field is smooth, it essentially measures the spatial 
differences of wind speeds due to the presence of rain. 

In contrast with C-band scatterometers, whose quality is 
mainly degraded by increased wind variability conditions, 
Ku-band scatterometers are sensitive to rain contamination 
(mainly attenuation and volume scattering). However, the 
retrieved wind quality is found to be little affected by 
low/moderate rain conditions. The JOSS QC indicator is 
essentially used to reduce the false alarm rate (FAR) of the 
MLE-based filtered WVCs for Ku-band scatterometers, i.e., 
to recruit those WVC winds initially filtered by MLE (due 
to rain), but which are mainly affected by local wind 
variability and low to moderate rain conditions [12].

 
Fig. 1 Mean vector difference (MVD) between ASCAT and 
ECMWF winds as a function of SE and MLE. The blank area is 
due to the lack of data in the corresponding bins. The grayscale 
corresponds to different MVD values (see the legend) [9]. 
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3. DISCUSSION AND CONCLUSIONS 
 
For optimized QC, it is important to discern between C-band 
fixed viewing geometry and Ku-band varying viewing 
geometry systems. As already mentioned, C-band systems 
are little affected by rain contamination, while Ku-band 
systems suffer mostly from signal attenuation and volume 
scattering by droplets. Also, the C-band ASCATs optimized 
fixed viewing geometry makes their inversion residual 
(MLE) a good noise (and thus QC) indicator across the 
entire swath [9]. In contrast, the QC effectiveness of the 
MLE derived from varying geometry systems varies across 
swath. In particular, in the outer swath region where only 
two views (beams) are available, the MLE is less effective 
as noise indicator [5], [10]. 

The correlation between the ASCAT wind quality and the 
MLE and SE derived parameters is demonstrated in [9], and 

mainly driven by wind variability effects. Moreover, the SE 
is proven to be a complementary parameter to MLE for 
ASCAT QC purposes, particularly in finding large sub-
WVC variability cases under rainy conditions. The QC 
method is further refined by taking the Kp and wind speed 
parameters into account. By choice, the combined SE/MLE 
and multi-parameter-based QC approaches filter, 
respectively, twice and three times as many poor-quality 
WVCs than the current MLE-based QC, for ASCAT wind 
speeds above 4 m/s. In particular, more data are rejected by 
the new methods near moist convection, i.e,., wind 
downburst areas (near rain cells). Depending on the method 
used, the percentage of quality controlled (QC’ed) WVCs 
for C-band systems ranges between 0.3% (MLE-based) to 
1% (multi-parameter approach).  
For Ku-band QC development purposes, collocated and 
QC’ed ASCAT winds are used as reference, since the latter 
are little affected by rain contamination effects. MLE and 
MLEm appear the most effective in the inner swath to 
uniquely detect rain, according to collocated GMI data, 
while SE is ineffective here for rain detection (see Fig. 2). In 

 

 
Fig. 2 Percentage of rain-contaminated data (GMI RR > 1 mm/h) 
as a function OSCAT-2 wind speed and the sorted percentiles by 
MLE (top) and SE (bottom). Only sweet-swath WVCs are 
analyzed. The white dashed curve indicates the rejection ratio of 
the operational MLE-based QC [11]. 

 

 
Fig. 3 Wind speeds from collocated OSCAT-2 rejected and 
ASCAT-B accepted WVCs by MLE QC (top); same plot but for 
OSCAT-2 FAR WVCs recruited by Joss (bottom). Only sweet-
swath WVCs in tropical regions (latitude ∈	 [-20°, 20°]) are 
analyzed [12]. 



the outer swath region, SE and MLEm are most effective for 
rain detection, but the MLEs are generally much less 
effective for QC here than in the inner swath. It turns out 
that the SE is generally more effective than the MLEm and 
the MLE in flagging the most discrepant Ku-band derived 
and ASCAT winds, notably in the outer swath. Since SE 
seeks for spatial wind singularities, this discrepancy 
between ASCAT and Ku-band winds is mainly due to Ku-
band wind quality degradation, caused by increased local 
wind variability. 

A particularly effective scheme is the so-called JOSS. As seen 
in Fig. 3 (top), a large amount of Ku-band MLE-based 
QC’ed WVCs are in good agreement with collocated 
ASCAT-derived winds (see high data density along the 
diagonal), and therefore of good quality. According to 
collocated GPM IMERG-F [16] rain data, most of these 
WVCs are only under low to moderate rain conditions [12]. 
JOSS proves to be well correlated to rain after MLE-based 
QC labeling, and as such, can be used for FAR reduction. 
Based on JOSS, FAR in the current MLE-based QC can be 
reduced by over 75%. Such percentage of recruited WVCs 
are indeed in good agreement with collocated ASCAT 
winds, as shown in Fig. 3 (bottom). While the MLE-based 
QC leads to about 5-7% of rejections, the combined MLE & 
JOSS QC leads to only about 2% of rejections, which include 
the most rain contaminated WVCs and the most discrepant 
winds (against ASCAT) from the MLE-based QC set. 

In conclusion, for C-band scatterometers the aim is to 
develop the most effective method in flagging extreme wind 
variability conditions, which includes both MLE and SE QC 
indicators. For Ku-band scatterometers, the aim is to filter 
rain-contaminated WVCs, for which the combined MLE(m) 
and JOSS (and possible inclusion of SE in the outer swath 
regions) is the preferred option. Moreover, SE, being the 
most effective indicator for increased wind variability 
conditions, should be further considered for specific 
applications. Variable winds are a potential hazard in some 
applications, such as data assimilation and the methods 
developed here may be useful for those applications. For 
other applications though, such as nowcasting and 
oceanography, it may be relevant to keep the “high wind 
variability” flagged WVCs since its winds provide essential 
information on (highly variable) air-sea interaction 
processes that cannot be captured by any other wind 
observing system. These results will be presented at the 
conference to initiate a discussion with the wide user 
community and find consensus on whether different QC 
methods should be used for different applications. 
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