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ABSTRACT

Reducing methane emissions is essential to tackle climate
change. Here, we address the problem of detecting large
methane leaks by using hyperspectral data from the satellite
Sentinel-5P. By sampling Sentinel-5P spectral data at fine
scale, we detect methane absorption features in the shortwave
infrared wavelength range (SWIR). Our method involves two
separate steps: i) background subtraction and ii) detection of
local maxima in the negative logarithmic spectrum of each
pixel. In the first step, we remove the impact of the albedo
using albedo maps and the impact of the atmosphere by us-
ing a principal component analysis (PCA) over a time series
of past observations. In the second step, we count for each
pixel the number of local maxima that correspond to a subset
of local maxima in the methane absorption spectrum. This
counting method allows us to set up a statistical a contrario
test that controls the false alarm rate of our detections.

Index Terms— methane, hyperspectral, pattern recogni-
tion, a contrario modeling, time series

1. INTRODUCTION

The detection of large methane (CH4) leaks from oil and gas
production is currently a major stake in order to reduce Green-
house Gas (GHG) emissions. In a time lapse of 20 years, a
CH4 molecule has a global warming potential 80 times larger
than carbon dioxide (CO2) [1]. A large part of the (CH4)
emissions could be controlled or avoided, as they come from
oil rigs and other oil and gas infrastructures.

In order to detect GHG fossil fuel emissions produced by
human activities, several satellites have been placed in orbit
around the Earth over the past ten years. Here, we focus on
the data provided by Sentinel-5P, launched in 2017 by ESA.
Sentinel-5P provides hyper-spectral images in wave bands for
which CH4 has a significant absorption coefficient.
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(a) L2 data: CH4 (ppb)
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(b) Counted maxima

Fig. 1: Figure (a) shows the concentration of methane in
parts per billion (ppb) given by the L2 methane product from
Sentinel-5P. We see a methane plume in green. Pixels in white
are discarded pixels (cloudy for example). Figure (b) gives
the number of counted maxima for each pixel in the original
image computed with the proposed method.

Data from Sentinel-5P is publicly available and is already
being used by ESA to quantify CH4 emissions and other
greenhouse gases [2]. However, the results provided by ESA
on CH4 detection are rather incomplete. In most Sentinel-5P
images, large regions are discarded by the retrieval algorithm.
Indeed, this complex algorithm relies on external data sets
which are not always available. The approach promoted by
ESA involves precise physical modeling of the phenomenon
of absorption, reflection and back scattering by atmosphere
and ground of the radiation emitted by the sun to quantify
XCH4, the dry air column mixing ratio [3, 4]. CH4 quantifi-
cation is then performed by inverting the said model.

CH4 detection can be performed with tools from the field
of anomaly detection in hyper-spectral imagery. Usually, de-
tection is performed on infrared wavelengths [5, 6]. Although
the absorption features of CH4 and water vapor (H2O) some-
times overlap in the infrared spectrum, their separation can be
addressed by a wise selection of wavelengths [6].

One classic anomaly detection strategy consists in per-
forming a background subtraction; then locally modeling the
remaining residual image as following a Gaussian model.
This probabilistic model then enables Neyman-Pearson tests
to be carried out on the pixels to detect anomalies [7, 8].



In [5], a CH4-specific technique is developed where the
background is removed by precise atmosphere modeling.
Then, CH4 is detected by a matched filter using the CH4

absorption spectrum. Another matched filter is used for CH4

detection in the Cluster-Tuned Matched Filter (CTMF), origi-
nally dedicated to sulfur dioxide [9], and then applied to CH4

detection in [10]. Spatial clustering allows to obtain results
over very large areas without the risk of confusing anomalies
due to CH4 with those due to other gases.

Another well-established technique in remote sensing
is the band ratio technique. This method is quite usual for
glacier monitoring [11] but is also used for hydrocarbons de-
tection [12], and is highly-applicable to our goals. Band ratios
are used to enhance the spectral signature of hydrocarbons.

Our objective is to introduce a flexible CH4 emission de-
tection method using the raw L1b data provided by Sentinel-
5P. We do so by using the fine spectral sampling of Sentinel-
5P data. We detect local maxima in the negative logarithmic
spectra of pixels that correspond to maxima in CH4 absorp-
tion spectrum. Observing many such maxima in the same
pixel should be the consequence of CH4 emissions. Results
of this method will then be compared with those obtained by
the ESA in the current L2 product.

2. MATERIALS

We use hyper-spectral images from Sentinel-5P. This satellite
provides a dense spectrum (nearly 4,000 samples) for each
pixel and covers the entire Earth once a day. Spectral samples
are organized in eight wavelength bands. Here, we use the
SWIR bands 7 and 8 which cover the 2,300-2,389 nm range
where the main absorption feature of CH4 is located. These
images are part of the level 1 (L1) product.

We also use the level 2 (L2) fully-processed data includ-
ing cloud maps, albedo and XCH4 column mixing ratios.
Cloud maps are necessary because their presence precludes
any CH4 detection. XCH4 images will be used to identify
plumes of CH4 and use them as ground truth.

Lastly, we use a detailed CH4 absorption spectrum taken
from the HITRAN spectral database [13]. CH4 spectrum
varies depending on pressure and temperature. However,
here we are only interested in CH4 spectrum within the bot-
tom layers of the atmosphere (below 1,500 meters above
ground), because we want to detect CH4 shortly after being
emitted, before it rises and dilutes.

Spectrum variations are small in the near-surface atmo-
spheric layers. Moreover, here we use the CH4 absorption
spectrum only for detecting local maxima, and as we can see
from Fig. 2, its profile practically does not change for the
near-surface conditions. Here, we selected the CH4 spectrum
at 15◦C and 1 atm to represent near-surface atmospheric con-
ditions.

2300 2320 2340 2360 2380
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

T = 288K, P = 1 atm
T = 273.15K, P = 0.5 atm
T = 268K, P = 0.3 atm

Fig. 2: Comparison of methane absorption spectra under sev-
eral pressure/temperature conditions. Red dots highlight the
70 maxima we use for detecting the plumes.

3. MODELING

We shall use a simplified atmospheric absorption model to
explain the value of each pixel in each channel of an image.
Let us consider a pixel P in a Sentinel-5P image. Such a
pixel is a vector in Rd where d is the number of channels in
the image (for our case 960 channels from bands 7 and 8).
Each pixel component Pi corresponds to a wavelength λi.

Our model takes into account: the effect of sun irradiance
FI(λi), the albedo A, the absorption coefficients of the dry
atmosphere Katm(λi), water vapor KH2O(λi) and methane
KCH4(λi). We denote by egas the thickness of gas crossed by
the radiation before reaching the sensor. Making implicit the
dependence on λi we can write the absorption model for the
whole vector P as

P = A exp(FI−Katmeatm−KH2OeH2O−KCH4eCH4). (1)

Similarly to other works [14], we assume here that the albedo
is roughly constant over the part of the infrared spectrum we
use, as it is extremely regular near 2000nm [15]. We take
into account the absorption by the dry atmosphere, as a single
gas whose absorption spectrum is well known. This spectrum
includes absorption from methane that is always present in
the atmosphere. The term KCH4

eCH4
represents the excess

of emitted methane over the one already present in the dry
atmosphere.

From now on, we shall work with − log(P) instead of P.
This allows us to have a linear model where excesses of
methane comes out positively. We denote by P0 the new
pixel value.

4. METHODS

Our methane plume detection method consists of two steps:
first a background subtraction to remove the contribution of
albedo and atmosphere, and then a counting step where we
count for each pixel the number of local maxima that corre-
spond to a shortlist of local maxima in methane absorption
spectrum.



4.1. Background subtraction

Our observations are dominated by the absorption of the at-
mosphere and the albedo. In order to detect potential local
excess of CH4, we start by performing a background subtrac-
tion. This background subtraction has two advantages. First,
it removes the contribution of albedo and atmosphere from the
spectrum of the current pixel. Second, it sets the mean CH4

concentration to zero. Indeed, there is a nearly-constant con-
centration of CH4 in the atmosphere and CH4 plumes rarely
exceed 3% of this concentration. So, we must make sure that
this mean CH4 concentration is completely removed during
background subtraction. To do so background subtraction ap-
plies three steps.

1. Albedo removal. First, albedo values from the L2 data
are used to remove the albedo component from each pixel.
Given a pixel P0 from a pre-processed hyperspectral image
I and the albedo A corresponding to this pixel, we compute
the albedo-corrected pixel P1 = P0 + log(A). The albedo
is assumed to be identical for each channel, as variations of
albedo are minor in the infrared spectrum [14, 15]. After this
first subtraction, P1 contains only contributions from irradi-
ance, atmosphere, water vapor and CH4.

2. Atmosphere removal. For removing the contribution
of the atmosphere we assume the irradiance and the dry at-
mosphere’s absorption spectrum to be roughly constant over
a short period of time (in practice this analysis is performed
over two weeks or less). So, we can estimate those two com-
ponents using a time series. For each pixel P1, we gather
observations X1, ...Xn of the same area at earlier dates and
without clouds. The background is then modeled as the prin-
cipal component of X1, ..., Xn, which we denote F . To re-
move the background of P1 we then remove its projection on
the subspace directed by F , i.e. P2 = P1 − 〈P1, F 〉F .

3. Methane equalization. The last part of the back-
ground subtraction is an equalization of the level of CH4 in
the current image. This subtraction works both spatially and
spectrally. After the second part of the background subtrac-
tion, only CH4 and water vapor should be left. However,
this is not enough to detect CH4 anomalies. Indeed, there
are about 1900 ppb (particles per billion) of CH4 in the at-
mosphere, but we want to detect variations in the order of
40 to 80 ppb. When the background is subtracted, a variable
fraction of those 1900 ppb are removed, depending on the at-
mospheric CH4 concentrations of earlier observations. This
difference in background CH4 can prevent a detection using
local maxima. To address this issue we first compute a spatial
average of CH4 concentration M by projecting each pixel on
the CH4 direction

M = 1
|I|
∑
P∈I

〈
P2,

KCH4

‖KCH4‖

〉
. (2)

Then, we remove this mean M from each pixel

P3 = P2 −M ×
KCH4

‖KCH4
‖
. (3)

After this last operation each pixel should only display a
mix of water vapor and excess CH4. Thus, CH4 detection
should be possible when the concentration of water vapor is
not too high.

4.2. Local maxima detection

Once the background has been removed, the spectrum of a
pixel should mostly be composed of excess CH4, water vapor
and sensor noise. CH4 and water vapor have different spectra
in the wavelengths we are interested in. Thus, we expect that
the wavelengths where CH4 absorption is maximal, should
also appear as maxima in the negative logarithmic spectrum
of a pixel with excess CH4. Otherwise, there should be only
noise on those wavelengths. Therefore, to detect CH4 plumes,
we count for each pixel the number of local maxima coincid-
ing to local maxima in the CH4 absorption spectrum.

For this, we cannot use all of CH4 local maxima. Some
of them correspond to small absorption coefficients, which
could be easily confused with noise. Thus, we can only use
the highest maxima in the methane spectrum. We selected the
70 highest maxima in the CH4 absorption spectrum between
2300nm and 2380nm. We can see them in Figure 2. In ad-
dition, we set up two adapted thresholds for the detection of
each of these maxima.

The first threshold τ1(P ) is the median of the spectrum of
the pixel P ; this prevents low maxima from being detected.
Since we use only the 70 highest maxima of the CH4 spec-
trum, we should also have high maxima in P . So this thresh-
old will not hinder the detection of CH4-related maxima.

We then compute a threshold adapted to each of the 70
chosen maxima. With the first threshold some maxima can
appear in almost every pixel in the image, just because a spe-
cific wavelength usually shows high values. For the wave-
length λ we set the threshold τ2(λ) as the 70% quantile of all
the values of the image at that wavelength; i.e for an image I
the 70% quantile of {Pλ | P ∈ I}. To summarize, for a max-
imum at wavelength λ in a pixel P , our detection threshold is
max(τ1(P ), τ2(λ)).

We need to set up a final decision threshold to tell apart
CH4 plume (excess CH4) pixels from background pixels
based on the counted maxima. In order to do this, we set up
an a contrario model. We take the a contrario assumption
that the image has no excess CH4, and compute the probabil-
ity of false detection under this assumption [16]. To do so, we
index the 70 highest CH4 spectrum maxima by i, going from
1 to 70, and we denote by pi the empirical probability that a
spectrum maximum occurs at i in a “normal” image. If CH4

anomalies occur in the image under study, they are generally
concentrated on very few pixels. Hence we can estimate pi
from the image itself, and this will lead to a tiny overestima-
tion of this probability if some pixels have excess CH4. The
random variable Xi, which is equal to 1 if the i-th maximum
appears and 0 otherwise, follows a Bernoulli distribution with
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Fig. 3: In the center of (a) we see a methane plume. We de-
tect this plume in our result (b). But we also find two other
plumes below the first one that cannot be seen in the L2 prod-
uct. Note that less pixels are discarded in our image than in
the L2 product.

parameter pi. To complete the a contrario model, we assume
that X1, ..., Xn are independent (in the absence of CH4). We
denote by S(P ) = X1 + ... + Xn the number of counted
maxima on a given pixel P . We then compute a detection
threshold τ which guarantees a given false alarm rate pfa

pfa(τ) = P(S(P ) > τ |P without excess CH4). (4)

The value of pfa is set to 10−6 in our experiments, which
amounts statistically to less than 0.01 false alarm per image.

5. RESULTS AND DISCUSSION

As shown in Fig. 1, the results obtained with our method are
consistent with the excess in XCH4 detected in L2 products.
We detect the major part of the plume seen in L2 data. We can
notice that we have a significant gap in the number of maxima
counted between the pixels with excess CH4 and the others.
This allows us to have few false detections. We tested our
algorithm with plumes of several sizes in different locations.
Of 12 plumes detected with the algorithm of ESA, 10 were
detected as having an NFA lower than 10−6, thus unlikely to
appear just by chance.

Conversely, as illustrated in Fig. 3, we can detect potential
plumes that are not found in the L2 product. As our method is
less dependent on external data, it discards fewer pixels than
the L2 product. In short, our method for CH4 detects anoma-
lous pixels backed by a statistical model and can compute a
detection threshold for any proposed plume. However, the
method does not work in presence of clouds or over water
where albedo is very small. Moreover, the model used here is
a very simplified model ignoring the Sentinel-5P instrument
noise and the influence of other greenhouse gases like NO2.
Further atmospheric modeling could improve the background
subtraction and the final detection.
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