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ABSTRACT
We propose a methodology to manage and process remote

sensing and geo-imagery data for non-expert users. The pro-
posed system provides automated data ingestion and manip-
ulation capability for analytical data-driven purposes. In this
paper, we describe the technological basis of the proposed
method in addition to describing the tool architecture, the in-
herent data flow, and its operation in a specific use case to
provide statistical summaries of Sentinel-2 regions of inter-
est corresponding to the cultivation polygonal areas located
in the Basque Country (ES).

Index Terms— Open Data Cube, Sentinel, data exploita-
tion, management, storage

1. INTRODUCTION

The use of high spatial resolution optical imagery for land use
and land cover change mapping [1, 2, 3] has generated a high
demand for efficient geo-imagery storage, processing, and
management infrastructures [4]. In response to that request,
The Committee on Earth Observation Satellites (CEOS) has
founded the Open Data Cube (ODC) initiative [5], publish-
ing a free and open geospatial exploitation tool [6]. Large
Spatio-temporal Earth Observation (EO) data volumes are
rapidly processed through metadata indexing and ingestion
procedures, providing an efficient tool to query remote sens-
ing data. The main drawback of implementing an ODC-based
environment for geo-imagery management and analytics is
that it requires an investment in hardware, as well as an
initial effort on configuring the system with the considered
metadata and product descriptions. Several contributions [6]
address data governance issues in terms of the use of cloud
environment tools such as Google Earth Engine (GEE) [7].
GEE provides a cloud environment, where the analysis of
georeferenced data (Earth observation satellites, weather, and
climate data) is possible with limited data management ef-
fort. This has resulted in an efficient and widely used tool
for tasks that range from querying and synchronizing cli-
mate reanalysis datasets to the exploitation of georeferenced
measurements for e.g. land use analysis [8] or to improve

existent plant phenology models [9]. A possible alternative
to GEE lies in initiatives such as ODC, which allow local
institutions to undertake geo-imagery data management and
analysis directly.

The ability to rapidly generate local statistics for a time
series of remote sensing images represents a valuable asset
for geo-imagery exploitation for rapid mapping. The pos-
sibility to routinely perform this generation in a completely
automated manner and in terms that are familiar to a domain
expert such as a forester or an agronomist represents an added
value point. In particular, the capability to translate the mea-
surements available in remote sensing image products in the
format of a multi-resolution tile pyramid allows the informa-
tion to be queried by simply specifying a spatial region and
a temporal interval of interest and a set of collections to con-
sider as sources. The possibility for the domain expert analyst
to deal with pre-processed, pre-organized, and pre-tiled infor-
mation content, allows them to focus on the intended applica-
tion without having to cope with specificities of the original
data that stem from the way those were collected.

In this sense, the main goal of the current contribution is
to describe and introduce a geo-imagery data management,
processing, and exploitation service. This service integrates a
methodology intended to provide statistical summaries of re-
gions of interest corresponding to geo-polygonal data. The
service is oriented to geospatial data analysts with limited
knowledge of remote sensing technology.

In what follows, we present in detail the problem to solve,
focusing on the processing of geo-polygons in ODC for the
extraction of geo-spatial statistics. We describe the imple-
mented architecture, detailing its main components. We pro-
ceed by presenting the imagery characteristics for static and
time-dependent products. In addition, we have verified the
performance of the service using Sentinel-2 imagery to ana-
lyze an approximated quantity of 20000 areas of interest lo-
cated in the Basque Country (ES).
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Fig. 1. Intended workflow. The overview of the methodol-
ogy for Geospatial Data Management and Analysis, from the
data ingestion to the data loading and processing for Machine
Learning pipelines.

2. PROPOSED ARCHITECTURE

In this work, we propose a methodology for Geospatial Data
Management and Analysis (see figure 1). This methodol-
ogy progresses from the insertion of metadata in a geospa-
tial database to the loading of the raster in a data frame in-
cluding attributes such as the temporal and geographic local-
ization of the specific measurement, to the processing of the
obtained data frame — possibly in terms of Machine Learn-
ing pipelines — to the export of the final results in standard
formats usable as input in further analysis.

This methodology is integrated into a scalable and robust
architecture based on Open Data Cube (ODC) [5]. This ar-
chitecture can be used on-premises or deployed as a complete
web service. The architecture is built on networked Docker
containers [10]. Docker’s modularity facilitates management
and deployment, both remotely and on-premises. The ar-
chitecture is divided in three principal components: Data
Sources, Data Storage and Processing Unit (see figure 2).

Data Sources are the elements that contain the required
information for the analysis. This data requires previous pro-
cessing and cleaning before the storage of the database. In
this work, we propose a processing unit to perform this data
ingestion. This unit supports the use of multiple data sources,
both on-premises and in the cloud.

The Data Storage is the component where the Geospa-
tial data will be stored. After performing the data ingestion
from the data sources, this information is stored here. Since
it is required by ODC, we use PostgresSQL with the PostGIS
extension as the architecture’s database. In order to enhance
the manageability and operability of the database, we have
decided to integrate a Docker containing the pgAdmin tool.

The Processing Unit is the core component of the archi-
tecture. This unit is responsible to orchestrate and perform

the tasks to be performed by the architecture. As mentioned
above, this core component relies on the Open Data Cube
ecosystem, which offers high processing power. Despite the
potential of ODC, it has certain limitations for automated data
ingesting and may not be user-friendly for a non-expert user.
Therefore, in addition to architecture, we propose a Python
library based on ODC to facilitate the analysis.

Fig. 2. Visual representation of the architecture and the in-
teraction between components. The processing unit is shown
as a unique component with a blue icon which represents it is
compounded by multiple Docker containers.

2.1. Processing Library

The processing library is an extension of the ODC with a
few improvements that reduce the learning curve for a non-
specialized user. The main goal of this library is to provide
the user the necessary tools to take advantage of this Geospa-
tial Data Management and Analysis framework with the least
possible effort.

Through this library, the user will be able to realize all the
necessary tasks to perform the data analysis. These tasks are
identified as data ingesting, loading, visualizing, and export-
ing.

Data ingestion is the first task that needs to be performed
before starting the analysis and provided the user with the
ability to manage and handle geospatial data in an automated
way. As mentioned above ODC has certain limitations to au-
tomate the data ingestion and makes difficult the usage of the
tool. It requires the geospatial data to be ingested manually,
specifying the features and characteristics of each raster im-
age. This, apart from slowing down the process, forces the
user to be familiar with the characteristics of the images be-
ing processed.

Therefore, we propose a methodology to leverage data di-
versity by generating metadata descriptions of geo-imagery
sources. Specifically, we use data-driven methods to extract
metadata and information about e.g. the acquisition geome-
try, sensor configuration, et cetera from a sample image of the
product. This process infers information such as the descrip-



tion of telemetry bands, coordinate reference system, resolu-
tion, et cetera, from the raster products. Hence, we provide
the user with the ability to add more types of geospatial im-
agery without requiring any prior knowledge of the resource.

Furthermore, the unit is able to process data periodically
from the desired satellite imagery providers, regardless of be-
ing on-premises or in the cloud. Thus, this offers the user
the possibility to connect the framework to Open Geospatial
Consortium (OGC) services (WCS, WMS, WMTS, et cetera)
or Amazon Web Service Buckets such as Sentinel-L2. There-
fore, this will provide access to the latest satellite imagery or
customized geospatial data files.

Data loading allows the user to explore and extract data
from the previously ingested data. This tool interacts directly
with the database and creates specific queries to load the re-
quired data. The user can create customized queries in order
to load data relying on the desired location, satellite type, time
series, band type, et cetera. In contrast to the original ODC
loading method, in our library, the user can make more com-
plex queries to be able to provide a more detailed analysis.
For example, the user will be able to request the data from
several types of images (e.g., Sentinel-L1 and Sentinel-L2) at
the same time.

However, the main improvement we have made on the
data loading is the processing of polygons. The data loader
use previously ingested or manually defined Geo-Polygons to
request data from the database. Unlike ODC, when realizing
queries relying on Geo-Polygons, our library only retrieves
the data of the points inside the polygon.

Finally, this process provides a data structure called
geopandas, which contains the loaded data. Geopandas struc-
tures are simple to manage and perform analytical operations.

Data visualization is a tool that allows the user to view the
loaded data simply. The visualization tool uses a plot repre-
sentation or an interactive map. Using plot visualization sim-
plifies the exploration of the evolution in the selected area as
a time series. Regarding the interactive map, each geospatial
point is rendered in the map in order to determine whether the
loading has been performed correctly and in the desired area.

To conclude, in the Data Export phase, previously loaded
and processed data is exported in the desired format such as
GeoTiff, GeoPandas, CSV, et cetera. The main objective of
this procedure is to generate datasets from these data for fur-
ther analysis.

The data export method is designed to load new data into
previously exported data files. In this way, this will avoid the
need to re-load data that has already been processed in the
past. This tool is powerful to periodically update the datasets
performing data loading.

3. USAGE EXAMPLE

In this section, we describe a practical scenario where we de-
tail the operation of the architecture. Prior to geospatial data

processing, we have ingested multiple satellite images using
various data resources. This ingestion has been performed
using on-premise custom geospatial data and the Sentinel-2
registry of open data on Amazon Web Service. Subsequently,
we have ingested a GeoPackage file containing several Geo-
polygons to use in the data loading and analysis process.

(a) (b)

Fig. 3. Geo-polygon visualization example using our pro-
posed python library. (a) Geo-polygon’s shape is represented
in a plot. (b) Geospatial location of the Geo-polygon on the
street view map.

For simplicity, we have selected a unique polygonal par-
cel to expose the methodology results (see figure 3). The sys-
tem uses the metadata stored in the geospatial index database
to convert the perimeter of the polygon of interest in image
pixel coordinates. These coordinates can be used to access
the measurement results as performed by the remote sensing
system.

These results are transferred to a GeoPandas data frame
that can be accessed and processed without having to con-
sider or rely on any of the characteristics of the remote sens-
ing system, which enables the information to be efficiently
exploited by application domain experts such as agronomists
and foresters without the need for a specific remote sensing
background.

Standard data processing procedures are automatically
launched on newly available images, for instance, to generate
products such as Normalized Difference Vegetation Indices.
Time series of measurements (i.e., NDVI) can subsequently
be composed and accessed by analytical pipelines.

The final datasets can be projected to an interactive map
visualization that allows users to provide input in the form
of interactive selections. This functionality can, for instance,
be exploited to enrich the original collection of pre-registered
land plots or to provide expert training to machine learning
tools (see figure 4).

4. CONCLUSIONS

The extended land usage analysis service solves data storage
or management limitations the old local data processing sys-



(a) Result NDVI

(b) Result EVI

Fig. 4. The representation of the polygon of interest can be
exposed in a web-based user interface view that depicts it in
3D (a). Each point represents the NDVI value of a 20x20 m
land plot. The same representation can be re-used for differ-
ent indices such as the EVI in (b).

tems have. In contrast to vanilla Open Data cube or Web
Coverage Services (WCS), we have introduced a system to
provide non-expert users with the ability to manage geospa-
tial data in data-driven algorithms without requiring knowl-
edge of remote sensing or geo-imagery exploitation.

In addition, the automated data ingestion facilitates suc-
cessful and efficient updates in the data history as well as
the subsequent pre-processing procedure. Moreover, the li-
brary facilitates the manipulation of those collected measure-
ments for different analytical purposes ranging from time se-
ries analysis to the learning of classification and prediction
models.

Furthermore, building the architecture on a dockerized in-
frastructure provides the capacity to integrate it in a container-
orchestration system such as Kubernetes. In this way, the
workload will be balanced depending on the computational
cost of the demands, generating new instances of the service.
This will increase the scalability of the architecture and en-
hance the robustness of the system. Moreover, using AWS or
WCS as data sources releases the system from data storage
and management loads.
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[2] Rafael Poyatos, Jérôme Latron, and Pilar Llorens,
“Land use and land cover change after agricultural aban-
donment,” Mountain research and development, vol. 23,
no. 4, pp. 362–368, 2003.

[3] Phan Thanh Noi and Martin Kappas, “Comparison of
random forest, k-nearest neighbor, and support vector
machine classifiers for land cover classification using
Sentinel-2 imagery,” Sensors, vol. 18, no. 1, pp. 18,
2018.

[4] Brian Killough, “Overview of the open data cube initia-
tive,” in IGARSS 2018-2018 IEEE International Geo-
science and Remote Sensing Symposium. IEEE, 2018,
pp. 8629–8632.

[5] J Ross, B Killough, T Dhu, and M Paget, “Open Data
Cube and the committee on earth observation satellites
data cube initiative,” 2017.

[6] Joan Maso, Alaitz Zabala, Ivette Serral, and Xavier
Pons, “A portal offering standard visualization and anal-
ysis on top of an open data cube for sub-national re-
gions: The Catalan data cube example,” Data, vol. 4,
no. 3, pp. 96, 2019.

[7] Noel Gorelick, Matt Hancher, Mike Dixon, Si-
mon Ilyushchenko, David Thau, and Rebecca Moore,
“Google Earth Engine: Planetary-scale geospatial anal-
ysis for everyone,” Remote sensing of Environment, vol.
202, pp. 18–27, 2017.

[8] Hamdi A Zurqani, Christopher J Post, Elena A
Mikhailova, Mark A Schlautman, and Julia L Sharp,
“Geospatial analysis of land use change in the savannah
river basin using google earth engine,” International
journal of applied earth observation and geoinforma-
tion, vol. 69, pp. 175–185, 2018.

[9] Noelia Oses, Izar Azpiroz, Susanna Marchi, Diego
Guidotti, Marco Quartulli, and Igor G Olaizola, “Anal-
ysis of Copernicus’ ERA5 climate reanalysis data as a
replacement for weather station temperature measure-
ments in machine learning models for olive phenology
phase prediction,” Sensors, vol. 20, no. 21, pp. 6381,
2020.

[10] Babak Bashari Rad, Harrison John Bhatti, and Moham-
mad Ahmadi, “An introduction to docker and analysis
of its performance,” International Journal of Computer
Science and Network Security (IJCSNS), vol. 17, no. 3,
pp. 228, 2017.


	1  Introduction
	2  Proposed Architecture
	2.1  Processing Library

	3  Usage example
	4  Conclusions
	5  References

