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ABSTRACT

High-resolution remote sensing images can provide abundant
appearance information for ship detection. Although several
existing methods use image super-resolution (SR) approaches
to improve the detection performance, they consider image
SR and ship detection as two separate processes and overlook
the internal coherence between these two correlated tasks. In
this paper, we explore the potential benefits introduced by im-
age SR to ship detection, and propose an end-to-end network
named ShipSRDet. In our method, we not only feed the super-
resolved images to the detector but also integrate the interme-
diate features of the SR network with those of the detection
network. In this way, the informative feature representation
extracted by the SR network can be fully used for ship detec-
tion. Experimental results on the HRSC dataset validate the
effectiveness of our method. Our ShipSRDet can recover the
missing details from the input image and achieves promising
ship detection performance.

Index Terms— Ship detection, image super-resolution,
remote sensing, deep neural network

1. INTRODUCTION

Remote sensing (RS) ship detection has attracted extensive
attention in recent years due to its large potential in both
civilian and military applications (e.g., port management,
target surveillance). As a key factor of ship detection, high-
resolution (HR) images can provide abundant appearance
information and thus introduce improvement to the detection
accuracy [9]. However, obtaining an HR image posts a high
requirement on the satellite sensors and generally results in an
expensive cost. Consequently, using image super-resolution
(SR) techniques to recover the missing details in RS images
has become a popular research topic and has been widely
investigated in recent years.

In the area of RS object detection, several methods have
been proposed to use image SR as a pre-processing approach
to improve the detection accuracy. Dong et al. [2] proposed
a second-order multi-scale SR network, and demonstrated
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Fig. 1: Visual results achieved by our ShipSRDet on the
HRSC dataset [7]. Our method recovers missing details in the
input image and achieves promising detection performance.

its effectiveness to RS object detection. Rabbi et al. [8]
proposed an edge-enhanced generative adversarial network
(EESRGAN) to improve the quality of RS images, and com-
bined EESRGAN and SSD detector in an overall framework
to perform end-to-end fine-tuning. Courtrai et al. [1] tai-
lored a GAN-based SR network with a detection network to
develop an object-focused detection framework. Note that,
although these methods have shown their effectiveness, the
benefits introduced by image SR has not been fully exploited
since only super-resolved images are fed to the detectors
while the informative feature representation extracted by SR
networks has been overlooked.

Aiming at the aforementioned issue, in this paper, we pro-
pose an end-to-end network named ShipSRDet to fully use the
super-resolved feature representation for RS ship detection.
Different from existing SR-based detection methods, we not
only feed the super-resolved images to the detector, but also
integrate the intermediate features of the SR network with
those of the detection network. In this way, more informative
cues can be transferred from the SR network to the detection
network to enhance the detection performance. Experiments
on the HRSC dataset [7] demonstrate the effectiveness of our
method. As shown in Fig. 1, our ShipSRDet achieves no-
table improvements on detection performance, and recovers
the missing details in the input image.

In summary, the contributions of this paper are as follows:
1) We quantitatively investigate the influence of image qual-
ity to RS ship detection. 2) We proposed a ShipSRDet to
exploit the potential benefits introduced by HR images and
their feature representation to RS ship detection. 3) Our Ship-
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Fig. 2: An overview of our ShipSRDet.

SRDet can recover the missing details in the input images
while achieving remarkable detection performance.

2. NETWORK ARCHITECTURE

In this section, we introduce our ShipSRDet in details. As
shown in Fig. 2(a), our ShipSRDet consists of two parts in-
cluding an SR module and a detection module, which will be
described in the following subsections, respectively.

2.1. SR module

As shown in Fig. 2(a), our SR module takes a medium-low
resolution image ILR ∈ RH×W×3 as its input to produce an
SR image ISR ∈ RαH×αW×3 and two intermediate features
FLRout ∈ RH×W×64 and FHRout ∈ RαH×αW×64, where H and
W represent the height and width of the input image, and α
denotes the upscaling factor. Here, we use the residual dense
block (RDB) [15] as the basic block in our SR module since
it can fully use features from all preceding layers to generate
hierarchical representations, which is demonstrated beneficial
to SR reconstruction [14].

Specifically, the input image ILR is first fed to a 3×3 con-
volution to generate initial feature F0 ∈ RH×W×64. Then,
F0 is fed to 8 cascaded RDBs for deep feature extraction.
Within each RDB, we use 5 convolutions with a growth rate
of 32. As shown in Fig. 2(b), features from all the layers in an
RDB are concatenated and fed to a 1×1 convolution for local
fusion. Similarly, features from all the RDBs in our SR mod-
ule are concatenated for global fusion. Afterwards, the fused
feature FLRout is added with the initial feature F0 and fed to a
sub-pixel layer [10] to generate the upsampled feature FHRout .
Finally, FHRout is fed to a 3 × 3 convolution to produce the

residual prediction which is further added with the bicubicly
upsampled input image to generate the final SR image ISR.

2.2. Detection module

Single shot multi-box detector (SSD) [6] is used as the de-
tection module in our ShipSRDet. In our detection module,
VGG-16 network [11] is used to extract multi-scale features
from the input SR image ISR. Simultaneously, feature adap-
tion is performed to integrate features from the SR module
with those extracted by the VGG network. Specifically, two
transition convolutions are performed on FLRout and FHRout to
adjust their feature depth to 256 and 64 to produce feature
FLRSSD and FHRSSD, respectively. Then, FHRSSD and FLRSSD are
added to the features in the 2nd and 7th layer of the VGG
network to achieve feature integration. After initial feature
extraction with the VGG network, an encoder is further em-
ployed for high-level feature extraction. Finally, seven feature
maps of different resolutions are generated and fed into the
detector&classifier to predict the location and category can-
didates. The final prediction is produced by performing fast
non-maximum suppression (fast NMS) on the candidates.

3. EXPERIMENTS

In this section, we first introduce the dataset and implementa-
tion details. Then, we present ablation studies to investigate
our network. Finally, we present the visual results produced
by our ShipSRDet.

3.1. Datasets and implementation details

We used the HRSC dataset [7] for both training and test.
We followed the original dataset split and performed 2× and



8× bicubic downsampling to generate training and test im-
age pairs. Consequently, each HR image has a resolution
of 512 × 512 and its corresponding medium-low resolution
conterpart has a resolution of 128× 128. Random horizontal
flipping, random vertical flipping and random rotation were
performed for data augmentation.

Our ShipSRDet was implemented in PyTorch on a PC
with an RTX 2080Ti GPU, and trained in a two-stage pipeline.
In the first stage, we followed [12, 13] to train our SR mod-
ule using the generated image pairs with an L1 loss. Adam
method [4] is used for optimization. The batch size was set
to 4 and the learning rate was was initially set to 1 × 10−4

and halved for every 200 epochs. The training was stopped
after 450 epochs. In the second stage, we concatenated the
SR module with the pre-trained detection module1, and per-
formed end-to-end finetuning for global optimization. In the
finetuning stage, the learning rate was initially set to 1×10−4

and decreased by a factor of 0.1 for every 10 epochs. The
finetuning process was performed for 24 epochs.

For evaluation, we followed [3] to use the mean average
precision (mAP) as the quantitative metric with the Intersec-
tion over Union (IoU) being set to 0.5.

3.2. Ablation Study

We compare our ShipSRDet with several variants to investi-
gate the potential benefits introduced by our network modules
and design choices. Here, we validate the effectiveness of our
method by introducing the following three variants:

• Bicubic+SSD: We use the bicubic interpolation ap-
proach to upsample the input image, and use the SSD
method for ship detection. This variant is used as a
baseline method for comparison.

• SRnet+SSD: We use the pretrained SR module (i.e.,
SRnet) to super-resolve the input image, and perform
ship detection on the super-resolved images by using
the SSD method. In this variant, image SR and ship
detection are performed separately without end-to-end
finetuning.

• (SRnet+SSD) ft: We canceled the feature integration
in our ShipSRDet and perform end-to-end finetuning
on the variant SRnet+SSD. In this way, only super-
resolved images are transferred from the SR module to
the detection module for ship detection.

Table 1 shows the comparative results achieved by our
ShipSRDet and its variants. It can be observed in the table
that using the super-resolved images as the input of SSD,
SRnet+SSD achieves an improvement of 1.30% in mAP as
compared to Bicubic+SSD. It demonstrates that the details

1We used the publicly available SSD network which was pre-trained on
the COCO [5] dataset.

Table 1: Comparisons of the mAP and average running time
(Avg time) achieved by different variants of our network.
Note that, Avg time is calculated based on an input image
of size 128×128. ‘ ft’ denotes end-to-end finetuning.

Model mAP Avg time
Bicubic+SSD 58.80 % 81 ms
SRnet+SSD 60.10 % 163 ms
(SRnet+SSD) ft 63.80 % 163 ms
ShipSRDet (proposed) 64.50 % 190 ms
HR+SSD 68.80 % 81 ms

recovered by the SRnet are contributive to the detection per-
formance to some degree. Note that, a further 3.70% im-
provement in mAP can be achieved if end-to-end finetuning
is performed on the variant SRnet+SSD. That is because, by
performing end-to-end finetuning, the SRnet can successfully
learn to super-resolve an image in a detection-driven man-
ner. The above experimental results also demonstrate that the
end-to-end finetuning is significantly beneficial to the over-
all detection performance. As compared to (SRnet+SSD) ft
which only transfers an image from the SR module to the de-
tection module, our proposed ShipSRDet can further achieve
an improvement of 0.70% in mAP by integrating feature rep-
resentations of these two modules, and approximates the up-
per bound (i.e., 68.80%) produced by performing SSD on the
HR image. This clearly demonstrates that the super-resolved
feature representation is beneficial to the performance of ship
detection.

Besides the detection accuracy, we also report the aver-
age running time in Table 1. As shown in the table, directly
performing an SSD detector on the HR image takes 0.81 ms
while using our SR module as a pre-processing step will lead
to an increase of 0.82 ms in average running time. When the
feature representation is transferred in the two modules, the
average running times achieves 190 ms. That is because, the
feature integration operation decreases the parallel process-
ing capability of the network. In summary, our ShipSRDet
can achieve improved detection accuracy at the cost of minor
decrease of the efficiency.

3.3. Visual Results

Visual results achieved by the bicubic interpolation approach
and our ShipSRDet are shown in Fig. 3. As compared to
bicubicly interpolated images, the images generated by our
network have finer details and are more faithful to their HR
groundtruths. Since more details are provided in the super-
resolved images and their feature representations, our net-
work achieves a superior detection performance. In contrast,
directly performing SSD detectors on the bicubicaly upsam-
pled images will lead to miss detections (the 4th row in Fig. 3)
and false alarms (the 2nd and 3rd rows in Fig. 3).
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Fig. 3: Visual results achieved by our ShipSRDet on the
HRSC dataset [7].

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a ShipSRDet to super-resolved re-
mote sensing images for ship detection. Experimental results
have demonstrated that both reconstructed high-resolution
images and their feature representations are beneficial to ship
detection. In the future, we will apply this scheme to more
state-of-the-art detectors, and validate its effectiveness on
more challenging scenarios such vehicle detection and tiny
person detection.
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