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ABSTRACT

Synthetic aperture radar tomography (TomoSAR) has been
widely employed in 3-D urban mapping. However, state-
of-the-art super-resolving TomoSAR algorithms are compu-
tationally expensive, because conventional numerical solvers
need to solve the l3-l; mix norm minimization. This pa-
per proposes a computationally efficient super-resolving To-
moSAR inversion algorithm based on deep learning. We stud-
ied the potential of deep learning to mimic a conventional
l2-l; mix norm solver, i.e. iterative shrinkage thresholding
algorithm (ISTA), and proposed several improvements of the
complex-valued learned ISTA for TomoSAR inversion. In-
vestigation on the super-resolution ability and estimator ef-
ficiency of the proposed algorithm shows that the proposed
algorithm approaches the Cramer Rao lower bound (CRLB)
with a computational efficiency more than 100 times better
than the conventional solver.

Index Terms— SAR tomography, Super-resolution,
Complex-valued neural network, Compressive sensing, deep
learning

1. INTRODUCTION

Synthetic aperture radar tomography (TomoSAR) has been
extensively applied in 3-D reconstruction in dense urban ar-
eas. The state-of-the-art TomoSAR inversion algorithms [1]
[2] [3] are mostly based on compressive sensing (CS) tech-
niques [4] since CS-based sparse reconstruction algorithms
usually have strong super-resolution power and conduct to
achieve the best performance using high-resolution SAR data
like TerraSAR-X in the urban areas. However, due to the l5-1;
mixed norm minimization, CS-based algorithms are always
computationally expensive for practical large-scale process-
ing. Previous works investigated how to reduce the computa-
tional cost of CS-based algorithms, for instance, by integrat-
ing persistent scatterer interferometry (PSI) and TomoSAR
[5] and by improving the efficiency of the optimizer [3]. How-
ever, the integration of PSI and TomoSAR [5] just reduces the
percentage of pixels that need to be solved using CS-based
methods by preclassifying the pixels. It did not fundamen-
tally speed up the TomoSAR inversion procedure. In addi-
tion, although [3] boosts the solver of the l5-l; mixed norm

minimization, it is still hard to be extended to large-scale pro-
cessing. In [6], the author investigated the potential of neural
networks to detect single scatterer by formulating the inver-
sion as a simple classification problem. Results showed that
the algorithm [6] is able to achieve reasonable estimation ac-
curacy in locating single scatterer. However, it cannot be ap-
plied to separate overlaid scatterers, which represents a gen-
eral SAR tomographic inversion problem. In addition, there
is no study so far about deep learning for TomoSAR in the
super-resolution regime, which is a more challenging case.

In this paper, we proposed a novel deep learning based
algorithm to address overlaid double scatterers detection and
estimation in the super-resolving regime. We unroll iterative
shrinkage thresholding algorithm (ISTA) [7] as a complex-
valued feedforward neural network with side connection. The
neural network is trained using datasets simulated according
to specific spatial baselines. Once the neural network is well
trained, it can be directly applied to further inference for SAR
data with the same spatial baselines.

2. BACKGROUND AND PROBLEM FORMULATION

In the presence of noise €, the discrete TomoSAR imaing
model can be expressed as follows:

g=Ry+e 1
where g € CV*! is the complex-valued SAR measurement
vector with N elements g,, R € CV*! is the steering ma-
trix and v € CL*! denotes the discrete reflectivity profile
vector. TomoSAR inversion is aimed at retrieving the reflec-
tivity profile ~ from the stacked SAR measurements for each
range-azimuth cell, thus determining the number of overlaid
scatterers and estimating their elevation. For TomoSAR prob-
lem with a sparse prior (e.g. in urban areas), the ideal solution
of (1) is via [y-norm minimization, which is, however, NP-
hard. It is investigated in [1] that the reflected signal along
the elevation direction is sparse enough so that the [yp-norm
minimization can be approximated by /;-norm minimization,
which is able to give us nearly optimal estimates. Based on
this fact, the reflectivity profile can be estimated as follows
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Fig. 1: Unfolded LISTA architecture. A K-layer LISTA unrolls the RNN and truncates it into K iterations, thus leading to a

side-connected feedforward neural network.

A is the factor to balance the data-fit and sparsity, it should
be selected according to the noise level. Details about how to
choose a proper A can be found in [8].

3. SUPER-RESOLVING TOMOSAR VIA DEEP
LEARNING

3.1. LISTA

ISTA [7] is a popular approach to solve equation (2), due to
its simplicity and efficiency. Each iteration of ISTA is defined
by

Ai = nst(Fi—i + BRTD;_1,0:) 3
with bz =g — R’%

where 49 = 0, 3 is a stepsize, 75 is the complex-valued ver-
sion of the soft-thresholding function applied to each element
of 4; and 6 is a parameter controlling the soft-thresholding
function to prune the elements with small magnitude. The
complex-valued soft-thresholding function 7, is defined by

1se(Fi: 6:) = " max(|3i] - 6;,0) Q)
By rewriting (3) as the following form
¥ = net {Wig + Wii1,6: } 5

where W& = SR and Wi = I — BRHR, we can find (5)
is the basic form of the i*" layer in a recurrent neural network
(RNN), if we view 75 as an activation function. Inspired by
this fact, the learned ISTA (LISTA) is proposed in [9]. LISTA
unrolls the RNN and truncates it into K iterations, thus lead-
ing to a K -layer neural network. Fig 1 illustrates the learning
architecture of LISTA.

3.2. CV-LISTA for TomoSAR

To apply LISTA to solve TomoSAR inversion, we extend
LISTA to complex-valued domain. Each neuron in complex-
valued LISTA (CV-LISTA) is assumed to have two channels,
which refer to the real and imaginary part of complex number,

respectively. We execute the following adaptions to equation

&)

Yi = Nst {Wig +Widio1, 91} (6)
where
- [38 380 e-[38] - (39

and R(-) and () denote the real and imaginary operators,
respectively. Accordingly, the matrix multiplication in the
feedforward phase conforms to the complex number multi-
plication rule.

soft-thresholding function
0.6 — piecewise linear function
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Fig. 2: Comparison between the piecewise linear function and
soft-thresholding function

Due to the fact that the output of the intermediate layer
in the CV-LISTA is generated exclusively on the output of
the previous layer, minor errors are likely to be propagated
and amplified in the upcoming layers. Furthermore, once the
useful information is discarded, it is no longer possible to
utilize the discarded information. Therefore, we give up the
soft-thresholding function since pruning of small magnitude
is very likely to result in information loss and replace it by



the piecewise linear function. The piecewise linear function
is formally defined as follows:
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Fig 2 compares the soft-thresholding function and the
piecewise linear function we adopt. As we can see, the piece-
wise linear function just further shrinks the small magnitude
rather than driving them to zero. It is conductive to mainte-
nance of useful information. In our experiments, we find the
piecewise linear function contributes to faster convergence
and increasing the estimation accuracy.

4. EXPERIMENTS

4.1. Simulation setup

We verified the performance of the proposed algorithm on
simulated data. We generated training and testing samples
with a similar baseline setting in [2], i.e. 25 regularly dis-
tributed spatial baselines in the range -135m to 135m, which
results in a Rayleigh resolution of about 42m. In the ex-
periments, it is assumed that each simulated sample contains
overlaid double scatterers with identical amplitude and phase,
i.e., the worst case.

In the simulation, we generated samples with the normal-
ized distance « between the double scatterers increasing from
0.1 till 1.2 with 12 samples and samples of different levels of
SNR varying from 0 dB to 10 dB. The normalized distance o
is defined as a ratio of the distance between the double scat-
terers to the Rayleigh resolution. For each pair of a and SNR,
0.2 million Monte Carlo trials were simulated. The testing
data was generated in the same way, but at only four different
SNR levels with SNR = (0, 3,6, 10) dB.

4.2. Performance assessment

The performance evaluation of a TomoSAR algorithm is two-
fold, i.e. the detection capability of multiple scatterers, and
the efficiency and bias of the estimator. A good algorithm
should have both high detection rate and high estimation ac-
curacy. To better assess the performance, we introduced the
“effective detection rate”, which is a combination of the de-
tection rate and the estimator accuracy. We define an effec-
tive detection in our experiments as follows: (1), the algo-
rithm successfully detects two scatterers; (2), the estimates of
their elevation should be within not only 3 CRLB but also
+0.5ds. d; is the distance between the true positions of the
double scatterers.

Fig 3 demonstrates the detection rate of the proposed
algorithm w.r.t the normalized distance at different levels of

SNR. It shows that the proposed algorithm achieves promis-
ing super-resolution power. To be specific, the proposed
algorithm reaches about 80% effective detection rate at 0.5
Rayleigh resolution and 6 dB SNR, whereas the state-of-the-
art method SLIMMER [2] algorithm reaches 85% under the
same setting. For very noisy cases, i.e., SNR = 0 dB, the
proposed method is still capable of separate overlaid dou-
ble scatterers in super-resolving cases with high probability.
For example, the proposed algorithm achieves about 60% of
detection rate when the double scatterers are spaced by 0.8
Rayleigh resolution.
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Fig. 3: Detection rate pq as a function of the normalized ele-
vation distance between the simulated double scatterers with
SNR = (0,3,6,10) dB and N = 25 under 0.2 million Monte
Carlo trials.

Fig 4 demonstrates the results of the facade-ground sep-
aration test at different SNRs, which is a well-known bench-
mark test for TomoSAR [1], [10]. In the figures, the eleva-
tion estimate of the simulated facade and ground are plotted
w.r.t their normalized true elevation distance. Each blue dot
has the mean of the estimates and the error bar depicting the
corresponding standard deviation. The two red lines mark
the true elevation of the simulated facade and ground. The
dashed curves denote the true elevation +1x CRLB. The dif-
ference between the dots and the corresponding red lines in
y-axis indicates the bias of the estimates. As it is shown in
the figures, the proposed algorithm provides high estimation
accuracy with the standard deviation of elevation estimates
within the CRLB in almost all cases, despite the fact that the
estimates suffer from large bias when the double scatterers
are extremely closely spaced. The bias of the estimates is ap-
proaching zero with the increasing normalized true elevation
distance.
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Fig. 4: Estimated elevation of simulated facade and ground, (a) SNR = 0 dB, (b) SNR = 0dB, (¢) SNR = 6 dB, (d)
SN R = 6 dB. Each dot has the sample mean of all estimates as its y value and the correspond standard deviation as error bar.

5. CONCLUSION

In this paper, a deep learning based algorithm CV-LISTA for
super-resolving TomoSAR inversion is proposed. We replace
the conventional soft-thresholding function by the piecewise
linear function to improve the performance of CV-LISTA for
TomoSAR inversion in the super-resolution regime. Realis-
tic simulations show that deep learning is capable of solv-
ing mixed L1- and L2-norm minimization in TomoSAR with
accuracy approaching the CRLB. The proposed algorithm is
also able to deliver competitive performance to the state of
the art under the super-resolving scenario. Therefore, we see
a high potential of applying deep learning for similar inverse
problems in various applications.
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