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ABSTRACT

Convolutional neural networks (CNNs) are widely employed
in remote sensing community. The CNN-based, also known
as patch-based land cover classification method has gained in-
creasing attention. However, this method very often requires
the aid of post-processing, otherwise it is difficult to obtain
accurate boundaries separating different land cover classes.
In this paper, we discuss the reason of this phenomenon and
propose a shift-invariant center-focusing (SICF) network to
deliver more accurate boundaries to improve the patch-based
land cover classification. The principle of SICF is calculat-
ing the class score from a center-focusing area based on a
shift-invariant feature extraction module to calibrate predic-
tion. We employ three modern CNNs to build correspond-
ing SICF networks, the evaluation results indicate that com-
pared with the conventional CNNs, the improvements made
by SICF for delivering accurate boundaries in land cover clas-
sification are significant.

Index Terms— convolutional neural network, shift-
invariance, class activation maps, land cover classification

1. INTRODUCTION

Empowered by the significantly enhanced performance within
past few years, convolutional neural networks (CNNs) are
widely recognized as a vital tool for land cover classification
in remote sensing (RS) community [1, 2]. In order to obtain
a land cover classification map for a given RS image using
the CNN-based, also known as patch-based method, firstly,
CNN classifies a series of contextual patches of the same size
extracted from the image in the sliding window approach in-
dividually, then each predicted label is assigned to the center
pixel of the corresponding patch [3, 4, 5].

However, a major deficiency in this classification mecha-
nism arises, it is difficult to obtain accurate boundaries sep-
arating different classes in the final classification map if the
patch-based method is applied solely without the aid of post-
processing (e.g., various segmentation technologies [3, 6]).
To provide an insight into this problem, if an input patch
contains contextual information correspond to more than one
classes (e.g., both grassland and built-up area present in the
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Fig. 1: Generating contextual patches for land cover classi-
fication by sliding window near a boundary area, each patch
contains two land cover classes: grassland and built-up area.
The top-2 predictions and corresponding probabilities output
by ResNet-18 are listed accordingly. As the center points of
the three contextual patches lay on the grassland area as rep-
resented by white boxes (enlarged for higher visibility), the
correct result should be grassland (green label). However,
all the three images are misclassified as built-up. Assigning
the incorrect prediction to the center pixel leads to inaccurate
boundaries.

same patch), which occurs frequently near the boundary ar-
eas, the prediction could be the class that does not appear in
the center of the patch as illustrated in Fig. 1. Because CNN
chooses the category associated with highest score after the
logistic regression / softmax to be the predicted class, without
specifically considering whether the corresponding features
present in the center area of the input.

In this work, we propose a shift-invariant center-focusing
(SICF) network for providing a solution to deliver more ac-
curate boundaries in the final classification map without fur-
ther post-processing. With the help of class activation maps
(CAM) which enabled the class-discriminative localization
introduced in [7], the SICF network accommodates a calibra-
tion module that calibrates the initial prediction by calculat-
ing per-class score from a center-focusing area. Moreover, we
noticed that there is increasing concern about the poor shift-
invariance capability of modern CNNs, meaning a slight shift
could lead to drastic differences in feature maps [8, 9]. Given
that the calibration module relies on feature maps in the last
convolutional layer to perform correctly, a shift-invariance
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Fig. 2: Architecture of shift-invariant center-focusing (SICF) network.

improved feature extraction solution is integrated in the pro-
posed network to provide a robust feature extraction during
the window sliding. Finally, we apply the proposed method
to three modern CNNs and test them on a dataset encloses six
land cover classes to evaluate the performance.

2. METHODOLOGY

2.1. Calibration Module

In SICF network, a calibration module is affixed after the soft-
max layer. The main function of the calibration module is
to let CNN eventually focus on the contextual information
presents in the center area of the input image. The principle
is inspired by CAM. Originally, CAM was introduced for ob-
ject localization for CNNs, let F' € R7XWXD denote feature
maps of the last convolutional layer with height H, width W
and depth D, CAM M, for class k reads [7]:
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where F; and w¥ represent the i-th channel of F' and the
corresponding weight in the fully connected layer for class k
respectively. As CAM highlights the contribution location for
each class, it enabled us to find out if the contextual informa-
tion of the initially predicted label appears in the center area
of the input patch. The calibration module defines a center-
focusing area and calculates per-class score within this area
for reselecting the correct class from the top-n predictions.
Let ¢ represents the center-focusing area, f;(x,y) denotes
values of F; at location (z,y), where (z,y) € . Consid-
ering H x W of F in most of modern CNNs is considerably
small (e.g., 7 x 7), in order to define a relatively smaller fo-
cusing area ¢, upsampling feature maps F' is needed (e.g.,
upsample to the same size as input by bilinear interpolation).
Score S for class k from area ¢ can be obtained:
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If the output of softmax layer fulfils a criterion (which will
be introduced later), scores for top-n ranked classes S¥ =
[SY, 5%, ..., S¢] will be calculated using Eq. 2. The class with
highest score will be accepted as the final prediction. Never-
theless, this calibration is only valid for the contextual patch
contains more than one land cover classes. If the confidence
score of the initial output is high, it is likely that the patch
contains only one class, the proposed calibration is unneces-
sary for this scenario. In this work, we utilize the highest
probability output by the softmax layer to define a criterion
to determine if the proposed calibration is applicable for a
given patch. Let P = [Py, P, ..., Pc] denotes the probability
vector in descending order for total C classes, if the high-
est probability P; is lower than a threshold «, it can be de-
termined that confidence of the prediction is insufficient and
calculation for S¥ for calibrating the prediction should be ap-
plied. Compared with simply reducing the contextual area,
the proposed method is designed to perform calibration when
needed, meanwhile well maintain the general classification
performance.

2.2. Shift-Invariance Improvement

The shift-invariance capability turns out to be poorly pre-
served by modern CNNs. In order to achieve high task per-
formance, subsampling in modern CNNs (e.g., max-pooling)
neglected an important sampling theorem: the signal should
be blurred before subsampling, which results in the insuf-
ficient shift-invariance capability as suggested in [8, 9].
Meaning when sliding the window in boundary area at a
small stride, the slight shift would lead to drastic deviations
in feature maps in deep convolutional layers. This would
eventually affect the function of calibration module because



Table 1: Numerical results on the test dataset. Per-class accuracy, OA and AA are displayed in percentage.

Network Forest Grass. Water Lar. B.  Sma. B. Imp. S. OA AA Kappa
ResNet-18 58.3 55.4 64.1 81.0 70.4 75.9 66.1 67.5  0.593
SICF-ResNet-18 69.2 814 74.3 75.5 78.1 87.3 77.4 77.6  0.728
DenseNet-121 51.8 60.1 61.3 83.2 74.6 72.6 65.9 67.3  0.590
SICF-DenseNet-121 82.2 71.6 84.9 71.7 80.8 77.8 78.5 782  0.741
MobileNetV2 373 65.5 69.0 74.5 58.1 82.5 63.2 64.5  0.559
SICF-MobileNetV2 529 72.3 42.6 72.8 76.9 80.2 65.1 66.3  0.581

feature maps in the last convolutional layer are used as input
for S¥ calculation.

To our best knowledge, there are two effective solutions
for improving the shift-invariance up to date. One possi-
ble approach is removing / reducing subsampling layers in
CNN [9], however we believe this method would lead to
high computational costs for land cover classification task at
large scale. In this work, we employ the antialiasing solution
provided in [8]. More detailedly, max-pooling is replaced
by three operations: firstly perform max-pooling with stride
1, secondly apply low-pass filter, finally subsample. Simi-
larly, we follow the suggestion from the researchers of this
method, substitute non-strided convolutional layer followed
by antialiasing and subsampling operations for each strided
convolutional layer in the original network. In principle, the
modifications should deliver a shift-invariant feature extrac-
tion system to pave the way for calibration module to function
normally. Fig. 2 demonstrates the comprehensive proposed
network.

3. EXPERIMENTS

3.1. Data Description

In this work, we acquire Google Earth zoom-level 16 optical
image from Berlin area and resample the spatial resolution to
2 meters per pixel to generate a dataset containing six com-
mon land cover classes: forest, grassland, water, large built-
up area, small built-up area and impervious surface. The size
of the patch is 128 x 128 pixels. Depends on the way of con-
textual patch sampling, the dataset can be differentiated into
two parts. The first part consists of ~10500 patches, each
patch encloses only one single land cover class contextual
information. We divide the first part in the ratio of 4:1 for
training and selecting the model. As the aim of this research
is to deliver more accurate boundaries, the second part com-
prises ~1500 patches are sampled from different boundary
areas, meaning each of them contains contextual information
correspond to more than one classes (i.e., more than one land
cover classes present in the image). The second part is used
as testing set to evaluate the classification performance.

In addition, we extract a region where a clear boundary
separating two land cover classes presents as a test area to

simulate the real land cover classification task to provide a
qualitative evaluation.

3.2. Experiments Setup

We apply the proposed method to three modern CNNs to
exam the performance: ResNet-18 [10], DenseNet-121 [11]
and MobileNetV2 [12]. As mentioned previously, for each
CNN, we modify the max-pooling and strided convolutional
layer to build the shift-invariant feature extraction module and
adhere the calibration module to the softmax layer to build the
corresponding SICF implementation.

The input patch is upscaled to 224 x 224 pixels when
fed into the network. The center-focusing area ¢ is defined
as the innermost 16 x 16 pixels (F' is bilinearly interpolated
to the same size as input). We set the threshold o to 0.999,
if the highest probability of the prediction is lower than this
threshold, score S¥ for the top-3 classes will be calculated
for calibration.

The experiments are conducted with PyTorch on an
Nvidia 2080 GPU card, for comparison, the three employed
CNNs and their corresponding SICF implementations are
trained for 1k epochs with Adam optimizer, learning rate le-
4, batch size 16 and multi-class cross-entropy loss function.

3.3. Results and Discussions

We use overall accuracy (OA), average accuracy (AA), Co-
hen's Kappa coefficient and per-class result as the evalua-
tion metrics. Table 1 lists the numerical results on the test
dataset. From the per-class perspective, the land cover classes
with homogeneous contextual information (e.g., grassland,
forest, small built-up area), the proposed SICF method out-
performs all the competitors. Whereas for the class with inho-
mogeneous contextual pattern such as large built-up area, the
SICF performance is inadequate, we believe this is because
the large built-up area usually feature complex geometry, the
main contribution of the score might not come from the cen-
ter area confined by the innermost 16 x 16 pixels. Moreover,
surprisingly, SICF fails to improve MobileNetV2 for classify-
ing water and impervious surface, one possible reason could
be the shift-invariant modification for MobileNetV2 impairs
the feature extraction performance for certain classes. While



image ground truth

ResNet-18

DenseNet-121

MobileNetV2

Fig. 3: Comparison of the land cover classification results
from ResNet-18, DenseNet-121 and MobileNetV2 with (a)
original architecture and (b) corresponding SICF network.
Green and purple colours represent grassland and small built-
up area respectively. The red pixels indicate where the
patches are mis-classified as large built-up area. The dark ar-
eas in (c) indicate where the sampled patch meet the defined
criterion for applying the calibration. It is worth mentioning
that the stride for sliding window within the test area is 5,
thus the size of the pixel in the ground truth and results is five
times as large as the input.

from the global perspective, the numerical results clearly indi-
cate that our proposed network surpasses all the competitors.
As a dedicated solution for improving boundary area classifi-
cation, the significantly enhanced performance is expected.

Fig. 3 illustrates the land cover classification results of
the test area. The boundaries in all of the classification maps
generated by the competing CNNs are conspicuously de-
viated from the one in ground truth, the discrepancies are
unneglectable in a real land cover classification task. By
contrast, SICF networks deliver highly accurate boundaries.
Compared with the conventional CNNs, the advantages of
our proposed method are significant.

4. CONCLUSIONS

In this work, we propose a shift-invariant center-focusing
(SICF) network to deliver more accurate boundaries for the
patch-based land cover classification. This network is de-
signed to calculate the class score from a center-focusing area
based on feature maps provided by a shift-invariant feature
extraction system to calibrate the prediction. We perform
evaluations quantitatively on a dataset sampled from bound-
ary areas and visually on a test area, we can draw a conclusion
that compared with the conventional CNNs, SICF network
can significantly improve classification performance for con-
textual patches enclosing more than one land cover classes,
hence delivers more accurate boundaries for land cover clas-
sification. Further researches including evaluating on more
comprehensive land cover classes and discovering a more
sophisticated definitiation of the center-focusing area for
covering inhomogeneous contextual information are desired.
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