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ABSTRACT

This paper aims to present a new algorithm to remove thin
clouds and retain information in corrupted images without the
use of auxiliary data. By injecting physical properties into
the cycle consistent generative adversarial network (GAN),
we were able to convert a cloudy multispectral image to a
cloudless image. To recover information beneath clouds and
shadows we create a synthetic multispectral space to obtain
illumination invariant features. Multispectral vectors were
transformed from Cartesian coordinates to Polar coordinates
to obtain spectral angular distance (SAD) then we employed
them as input to train the deep neural network (DNN). Af-
terward, the outputs of DNN were transformed to Cartesian
coordinates to obtain shadow and cloud-free multispectral im-
ages. The proposed method, Hybrid GAN-SAD yields trust-
worthy reconstructed results because of exploiting transpar-
ent information from certain multispectral bands to recover
uncorrupted images.

Index Terms— Cloud Removal, Generative Adversarial
Networks (GANs), Polar Coordinates, Multispectral Satellite
Images.

1. INTRODUCTION

Remote Sensing (RS) imagery data provides an excellent op-
portunity in Earth Observation (EO) to analyze and obtain in-
formation to understand the Earth’s resources and physical
phenomena parameters. However, clouds cover more than
half of the Earth, according to statistics. This is a common
issue with optical RS images causing information to be ob-
scured by clouds and their associated shadows. As a result,
we cannot capture reliable information from corrupted im-
ages unless we use clear sky images for the same time that
they are not available. Therefore, one reasonable solution is
improving the networks by leveraging trustworthy and trans-
parent physical properties. Our proposed method is exploiting
spectral angular distance (SAD) to train cycle-consistent ad-
versarial networks with illumination invariant features that is
illustrated in Figure 1.

Since that, we need cloud-free images, many methods are
proposed to detect and remove clouds from remote sensing

Fig. 1. Hybrid GAN-SAD removes cloud and shadows in
corrupted images and recover underneath information in mul-
tispectral images using illumination invariant features in polar
coordinate.

images. By reviewing studies in cloud removal, we have
grouped the methods into three categories. One category is
multitemporal-based in which there are used multitemporal
images of the same area. The drawback of this category is that
on the one hand, the time interval of multitemporal images is
long on the other hand the area is changing rapidly. For this
reason, usually the accuracy of the reconstructed area is low.
The second category is based on deep learning algorithms.
Nowadays various kinds of generative adversarial networks
(GANs) have been created for different applications. There-
fore, many studies have been published for cloud removal
using GANs. For example, [1] has proposed Multispectral
conditional Generative Adversarial Networks (McGANs) for
cloud removal from visible light RGB satellite images with
multispectral images as inputs. The third category is based
on multisensory data fusion in which is used auxiliary pene-
trable modalities. A helpful auxiliary data in this field con-
sist in Synthetic Aperture Radar (SAR) images. Thanks to
long-wavelength SAR can penetrate through clouds in dif-
ferent weather with different kinds of clouds. SAR-optical
data fusion was proposed in [2] to remove clouds using cycle
GAN. Also they computed cloud probability masks to specif-
ically model cloud coverage explicitly while reconstructing
cloud-covered information.

Unlike most computer vision algorithms for dehazing
which are based on image enhancement, we inject physical
properties into deep neural network to reconstruct the con-
taminated regions. Therefore, we use 12 Sentinel-2 bands in
order to benefit spectral reflectance of multispectral images.
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In this paper, we extend the proposed model in [3] based
on cycle-consistent GAN to remove cloud from corrupted
multispectral images. The most significant advantages of this
method are the elimination of the need for paired images
(cloudy/cloudless) and the use of an auxiliary modality that
penetrates clouds. In contrast to [3] we exploit transparent in-
formation in the dataset by translating pixel values into polar
coordinates, and then we train the network with illumination
invariant features to reduce the impact of clouds and shadows.
The proposed method, Hybrid GAN-SAD not only achieves
notable results but also increases the trustworthiness of the
network by utilizing reliable physical properties.

2. METHODOLOGY

The Hybrid GAN-SAD method is combing using polar coor-
dinate transformation and training the cycle-consistent GAN
by illumination invariant features to translate the cloudy im-
ages to the cloudless images that includes two mapping func-
tions.

2.1. Spectral Angular distances (SAD)

We transform pixel values of Bottom of Atmosphere (BOA)
reflectance images into the polar coordinates for both cloudy
and cloudless domains. We train the networks based on il-
lumination invariant features. We employ transformation of
radiance values into polar coordinates that in [4] has been
used for the scalable color descriptor. The polar feature space
enables the network to recover information of the corrupted
area and increase the robustness of the network. Figure 1 il-
lustrates outline of the Hybrid GAN-SAD that each corrupted
image includes 12 separate spectral bands that are shown as
B1, B2, ..., B12; and after polar coordinate transformation,
we achieve 11 spectral angular distances that are defined
as θ1, θ2, ..., θ11. The angular distances are calculated as
follows:

θ1 = arctan

√
B2

12 +B2
11 + ...+B3

2 +B2
2

B1

θ2 = arctan

√
B2

12 +B2
11 + ...+B3

2

B2

... (1)

θ10 = arctan

√
B2

12 +B2
11

B10

θ11 = arctan
B12

B11 +
√
B12

2 +B11
2

the inputs of networks include feature matrices with 128×128×11
dimensions for both cloudy and cloudless. The outputs of the

GAN that are shown in Figure 1 as generated spectral angular
distances are θ′1, θ

′
2, ..., θ

′
11. Finally, we obtain shadow and

cloud-free multispectral images by employing the inverse of
equation 1 that is formulated by the following equation to
convert outputs of the GAN to Cartesian coordinates:

B′
1 = ρcos(θ′1)

B′
2 = ρsin(θ′1)cos(θ

′
2)

B′
3 = ρsin(θ′1)sin(θ

′
2) cos(θ

′
3)

... (2)

B′
11 = ρsin(θ′1)...sin(θ

′
10)cos(θ

′
11)

B′
12 = ρsin(θ′1)...sin(θ

′
10)sin(θ

′
11)

where B1
′, B2

′, ..., B12
′ are shadow and cloud -free spectral

images and ρ is radial coordinate.

2.2. Cycle-Consistent Generative Adversarial Networks

The cycle-consistent GAN has been presented in [5] for learn-
ing to translate an image from source domain to a target do-
main in absence of paired examples. Our training dataset con-
sists of 470 patches for cloudy domain (c ∈ C) and 1500
patches for cloud-free domain (f ∈ F ). The generator Gcf
translates images from cloudy images to the cloud-free do-
main and the generator Gfc translates cloud-free images to
the cloudy domain. In addition, there are two discriminators
Dc and Df that distinguish real images from generated im-
ages by the mentioned generators. Figure 2 (left) illustrates
the mapping function from a cloudy image to cloud-free. The
translated image is used as input for the second generator
Gfc to minimize cycle loss function (Lcyc) and vice versa
for mapping the cloud-free into the cloudy that is shown in
the Figure 2 (right). Furthermore, we feed the cloudy source
images into the second generator to obtain an identical image
is used to minimize the identity loss function (Lidt).

According to [5] the cycle loss function and identity loss
function are formulated as:

Lcyc = ||Gfc(Gcf (c))− c||1 + ||Gcf (Gfc(f))− f ||1 (3)

Lidt = ||Gcf (c)− c||1 + ||Gfc(f)− f ||1 (4)

in addition, the negative log-likelihood objective by the least
square performs more stably during training and generates
higher quality results. We use the least square error function
that is formulated as:

Ladv = [Dc(Gcf (c))− 1]2 + [Df (Gfc(f))− 1]2 (5)

by combining equations (3), (4), and (5), we get the final loss
function formula

Lall = λcycLcyc + λidtLidt + λadvLadv (6)

where all weights of the loss functions are set similarly to [5]
i.e. λcyc = 10, λidt = 1, λadv = 5.
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Fig. 2. Block diagram of cyclic GAN model. Two mapping
networks and associated adversarial discriminators that are
trained simultaneously to encourage more indistinguishable
translation. To minimize the error of mappings, we use three
different loss functions include Lcyc, Lidt, and Ladv .

3. RESULTS

Our dataset is composed of four scenes of Paris to compare
our model with the model in [3]. We extracted the level-2A
Sentinel-2 data acquired between February and March 2020.
The land cover area includes urban area, agricultural and wa-
terbody. We cropped them into 2400 patches by size 128×128
pixels for each band. For evaluation, we use the images of
the same areas with 16 days temporal variation.The model
was trained on an NVIDIA Quadro GV100 GPU with 32 GB
memory. We use open-source code for cycle GAN that has
been implemented using Keras library. We extend it to use
for remote sensing data not only three visible bands but also
Sentinel-2 12 bands.

We present the results of spectral angular distances ob-
tained using polar coordinates transformation in Figure 3 in
which are illustrated some samples of feature images in polar
coordinate corresponding to multispectral band. The first row
shows B4 (Red channel) samples including clouds and shad-
ows and the second row shows the same scenes represented
by angular distances. The pixel values of multispectral bands
mapped in polar coordinate angles in range [0, π2 ].

For quantitative results, we assess the image quality by
calculating the PSNR and SSIM. As a reference, we use clear
sky patches from 19 March 2020 as a ground truth. Table
1 compares the average PSNR and SSIM for the considered
strategies. In addition, the last column (Non-process) de-
scribes average of SSIM and PSNR that calculated between
cloudy test dataset and ground truth. In all the cases, the hazi-

Fig. 3. Row I: Images corrupted by shadow and cloud in B4
Sentinel-2 and Row II: The angular distance (θ4) corresponds
to the above images

RGB RGB+IR full bands Hybrid GAN-SAD Non-process

SSIM 0.7158 0.7558 0.7203 0.7398 0.7079

PSNR 26.2113 27.8445 26.0306 27.5246 22.6796

Table 1. Quantitative assessment (SSIM and PSNR) of the re-
sults of three different methods, proposed method using polar
coordinates and test cloudy dataset.

ness is removed more or less since the values are higher than
SSIM: 0.7079 and PSNR: 22.6796 for Non-process. In terms
of efficacy, RGB+IR thanks to the use of the penetrable near-
infrared band, obtained the best results in both quantitative
assessments, and then our proposed method using SAD has
better results than full bands and the proposed method in [3].

For qualitative comparison of results, we train our net-
work using three different strategies. First we use only RGB
visible (B4, B3, B2) bands of training dataset, second RGB
and Near-Infrared (B8) and finally full bands. Figure 4 shows
the results of network using each methods. For visualization,
we use only visible bands and increase the brightness of the
figure for more clarity. On the first row there are samples
of test images, on the second row is shown output of model
in [3] then we added Near-Infrared bands and we got third
row results. The forth row represents results using full bands
of dataset. Furthermore, results of network that trained by
converted images to polar coordinate (proposed method) are
illustrated in fifth row. Finally, the last row shows cloud-free
patches with 16 days different interval as a ground truth. As
you can see, haziness could be removed easily in all methods
(three last columns). Near-Infrared thanks to be thin cloud
penetrable outperforms other methods for dehazing. Our pro-
posed model has not only acceptable effect on cloud removal
but also gain considerable impact to remove shadows and re-
cover information beneath it that rest of other methods are
disable to remove shadows (columns 2-7). By looking closer
we find out corrupted patches by dense cloud is problem and
recover all information of background without using auxiliary
data such as SAR is impossible.
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Fig. 4. Qualitative results, Row I: cloudy test samples, Row II: results of RGB [3], Row III: results of RGB+IR, Row IV: results
of full bands, Row V: results of Hybrid GAN-SAD, Row VI: ground truth.

4. CONCLUSION

By comparing the results with clear sky images, we recog-
nize that the model correctly detects clouds and tries to trans-
late urban texture to the corrupted area. However, it is not
enough because we need real information beneath clouds and
shadows. Therefore, we proposed modified deep neural net-
works by injecting physical properties to achieve trustworthy
results. As we recover real information of the background
that has been blocked by the clouds, we can trust the outputs
of the model. In summary, we conclude: First, the land cover
distribution of the training dataset affects the learning of the
model. Second, using angular distances provides physical in-
formation and an excellent solution to remove shadows by
considering recover trustworthy information.
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