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ABSTRACT

ESA’s BIOMASS is the seventh Earth Explorer mission.
Tt will be devoted to the global monitoring of: 1) above
ground forest biomass and biomass change maps with an
accuracy < 20%, a 100-200 m spatial resolution, and 6-12
months temporal resolution; 2) global forest disturbance
maps with a classification accuracy > 90%, a 50-200 m
spatial resolution, and 2-12 months temporal resolution; and
3) global forest height maps with an accuracy of 20-30%, 100
m spatial resolution, and 12 months temporal resolution.

BIOMASS is based on a P-band SAR (438 MHz center
frequency, 6 MHz bandwidth) orbiting in a dawn-dusk, Sun-
synchronous orbit at 674 km, that will systematically acquire
fully- (quad-) polarized image data in an inferferometric
mode over all major forested areas on the globe and a
tomographic phase (7 images) to retrieve forest vertical
structure information. At P-band ionospheric effects are very
important and need to be corrected for. This paper describes
the current status of the Ionospheric module for the Biomass
End-to-end Performance Simulator (BEEPS-IOM).

Index Terms— Ionosphere, scintillation, intensity,
phase, Faraday rotation, dispersion.

1. INTRODUCTION

ESA’s BIOMASS is the seventh Earth Explorer mission
[1]. Over the past 3 years UPC/IEEC and RDA have been
developing for DLR the Ionospheric module for the
BIOMASS End-to-End Performance Simulator (BEEPS).
Preliminary progress results were presented inIGARSS 2021
[2]. In IGARSS 2023 the final version of the simulator will
be presented. Figure 1 shows the block diagram of the module

! WBMOD is not part of this software package, and its outputs are
obtained independently and used as inputs of this simulator.

that simulates the ionospheric effects on propagation of

electromagnetic waves, including:

s low-frequency effects (group delay, phase advance,
dispersion, losses and Faraday rotation angle.) [3] are
associated to slowly varying electron density profiles,
and the associated Total Electron Content (TEC), as
derived from the combination of IRI/NeQuick VIEC
modelling, the stochastic (slow} TEC variability not
captured by climatological models and the equatorial
plasma bubbles (EPB) with their Eastward drift.

e high-frequency  effects (intensity and phase
scintillations) are formmlated using Rino’s Multiple
Phase Screen model [4] with several configurable inputs,
including a wvariable screen height (as given by the
maximum of the electron density profile in each point),
and a horizontal drift of the ionosphere. Several of the
high frequency inputs can be obtained directly from the
WBMOD model outputs® if selected by the user

It is worth noting that random and moving electron density

inhomogeneities not only introduce rapid intensity (i.e.

“losses”) and phase fluctuations, but also high-frequency

fluctuations of the ionospheric delay. and Faraday rotation

angle.

Currently, all the BEEPS-IOM interfaces to compute the
TEC from the electron density profiles provided by IRI or
NeQuick and to use the IGRF model, gAGE stochastic TEC,
and EPB models have been completed and validated, as well
as the interfaces to read [ONEX files, and the implementation
of the mapping function. Signal disturbances (delay, phase,
losses, Faraday rotation, and fast scintillations) have also
been completed and validated.

2. LOW-FREQUENCY EFFECTS
The calculation of the ionospheric effects requires first to
compute the Slant Total Electron Content (STEC) from the



Fig 1. IOM-BEEPS software architecture indicating low- and high-
frequency 1onospheric effects, models, and their mputs.

Vertical Total Electron Content (VTIEC), using the mapping
function (see Fig. 1), and including the TEC Stochastic
variability as well as bubbles and depletions contributions.
The VTEC is estimated from the numerical integration of the
electron density, from either IRI [6] or NeQuick [7], over a
vertical column at a particular location and time.

Figures 2 and 3 show sample VIEC and magnetic field
simulated for one full orbit of BIOMASS. The magnetic field
is calculated according to the IGRF model at the Ionospheric
Piercing Points (IPP) onto a layer placed at the height of
maximum ionization (ionospheric height).
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2.1. Delay, Phase and Dispersion
The envelope of the signal suffers a positive delay (in meters
or in seconds) as given by:
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The phase measurements suffer advancement when crossing
the ionosphere given by:
40.3- 10'®
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This phase advancement can be converted into wavelengths
by dividing by the electromagnetic wavelength (4 = ¢ /f).
and into radians by subsequent multiplication by 2.
From the Eqn. (1) a simplified expression for the signal
dispersion due to the finite bandwidth can be estimated as:
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Figures 4, 5, and 6 show sample delay, phase, and dispersion
simulated for a full orbit of BIOMASS.
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Fig 2. IOM-BEEPS simulated Vertical Total Electron Content
(VTEC).
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Fig 3. IOM-BEEPS simulated Earth’s magnetic field ata height of
350km.
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Fig. 4. IOM-BEEPS simulated 1onospheric delay.
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Fig. 5. IOM-BEEPS simulated phase advance.
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Fig 6. IOM-BEEPS sinmlated dispersion.

2.2. Losses and Faraday rotation:

Tonospheric losses above VHF are very small, but increase at
lower frequencies. In fact, for an example frequency of
435MHz, the one-way absorption (in [dR]) has an average
value of ~0.010 dB at mid-latitudes for a zenith path. Atpolar
and auroral regions the average absorption is ~0.045 dB for
zenith path [9]. From 45° to 65° latitude a linear transition is
assumed. As compared to all other propagation losses and
intensity scintillation, this effect is negligible. Figure 7 shows
a sample ionospheric absorption simulated for a full orbit of
BIOMASS.
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Fig 7. IOM-BEEPS sinmlated absorption.

The calculation of the Faraday rotation requires the
evaluation of the magnetic field of the Earth, using e.g. the
IGRF-13 model [5], which provides the North-East-Up

components (§NEU). The angle between the magnetic
field (§xyz in ECEF coordinates), and the wave
propagation direction (k) is computed by means of the
scalar product of the normalized vectors:
cos(8) =k - E‘xy,. (4)
Finally, the Faraday rotation can be computed as:
1322097 STEC(E) rconl| Buzullcos (6),  (5)
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where the electric field polarization vector rotates clockwise
if @ > (P. Figure § shows a sample Faraday rotation simulated
for a full orbit of BIOMASS.
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Fig & IOM-BEEPS simulated Faraday rotation
3. HIGH-FREQUENCY EFFECTS

High-frequency effects (intensity and phase scintillations)
are formulated using Rino’s Multiple Phase Screen model
[4]. However, in [4], the geophysical parameters, such as the
TEC, the magnetic field, the ionospheric height at which the
peak of the electron density is (and so is Rinos’ phase screen).
are assumed to be constant, which in real life they are not, as
they vary along the orbital position. A particularity of
UPC/IEEEC and RDA implementation of Rino's model, lies
in the fact that the long strip can be divided into smaller tiles,
allowing for the geophysical parameters to vary per tile. The
tiles are designed to be large enough to accommodate (i.e. fit)
the largest scales of the ionospheric irregularities, but small
enough so that the Earth’s magnetic field and VTEC
variability inside them are negligible.

The assumption that the Earth's magnetic field and
geometry do not change significantly within a “tile” (i.e.
Rino’s model output) has also been assessed for two different
cases at equatorial and polar latitudes (see Fig. 9), finding a
maximum phase difference of ~ 0.015 rad (~ 0.85), and a
maximum intensity difference of —~ 0.1 dB. These differences
are small enough so that results can be considered
qualitatively the same.
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Fig. 9. Sample snap-shot (“tile”) of the IOM-BEEPS high-frequency
1onospheric effects: (left) intensity semtillation (£0.6 dBopeak-topeak),
(center) phase scintillation models (-40°, +607), and (1ight) case
studies #1 (5.15°, -3.77%) and #2 (6054°, -7 58°) used to assess the
goodness of the approximation that the Earth’s magnetic field and
geometry do not change significantly within a “tile” (point P1, P2,
P3 and P4, wrt. to central point of the “tile”).

Finally, Figs. 10 and 11 show the intensity and phase
scintillations, respectively. These images are “frozen” as they

correspond to the time the S/C is transiting and looking to the



side. Despite this the images have also a horizontal translation
at moderate speeds, that are inferred from the WBMOD [8.9].
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Fig 10. IOM-BEEPS simulated ionospheric intensity scmtillation
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Fig 11. IOM-BEEPS simulated 1onospheric phase scintillation.
3. CONCLUSIONS

The BEEPS-IOM tool is a powerful tool that is currently
being used by DLR to infer the effects of the ionosphere in
ESA BIOMASS observables, and to derive mitigation
algorithms, notably focusing algorithms, and to compensate
for the signal dispersion. Itis planned that during the mission
operations, the simularor will ingest estimations of the actual
ionospheric parameters at the time the S/C is passing.
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