
Key question: Can we train a fast
accurate simulator of at-sensor
radiances for SIF retrieval with
DESIS and HyPlant?

Bottomline: We developed a fast and accurate ML simulator of at-sensor radiances for
DESIS and HyPlant. The simulator enables the swift generation of large data sets and
can be integrated into SIF retrieval methods. This illustrates how ML and physical
modelling can be combined to unlock the full potential of remote sensing data.
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DESIS:
h = 400 km
FWHM = 3.5 nm

HyPlant:
h = 0.3–3 km
FWHM = 0.3 nm

Retrieval of solar-induced fluorescence (SIF)
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Simulation of DESIS and HyPlant spectrometer data Step 1

Training and evaluation of ML simulator Step 2

Contact: Miguel Pato 
(miguel.figueiredovazpato@dlr.de)

features (input): 𝑥 = atmosphere, geometry, surface, sensor

targets (output): at-sensor radiance spectrum 𝐿s = 𝐹(𝑥) 𝐹:ℝ𝑑 → ℝ𝑚

ML methods: Ordinary Least Squares (OLS), Polynomial Ridge Regression (P2, P4), Neural Networks (NN)

evaluation: mean absolute error (MAE)

Polynomials of 4th degree are fast and accurate.1

Speed: 107 times faster than the simulation.2

Accuracy: errors 10 times below SIF signal.3

There is room for improvement.4
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Regression problem

See related work in poster MOP.P17.5:
Buffat et al, Deep learning based prediction of
Sun-induced fluorescence from HyPlant imagery
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Specification
Databases

DESIS HyPlant

Input dimensions 11 13

Output dimensions 13 349

Number of samples 1.2×107 1.5×107

Data size [GB] 5.6 64.7
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Step 1: Simulate data

Step 2: Train and evaluate

input
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surface:
reflectance ρ
fluorescence 𝐿F

simulated spectra for different atmosphere, 
geometry, surface and sensor properties

at-sensor radiance spectrum at-sensor radiance spectrum
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simulator error distribution

Sun zenith angle – tilt angle [deg]


