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ABSTRACT

We develop a graph active learning pipeline (GAP) to detect
surface water and in-river sediment pixels in satellite images.
The active learning approach is applied within the training
process to optimally select specific pixels to generate a hand-
labeled training set. Our method obtains higher accuracy with
far fewer training pixels than both standard and deep learning
models. According to our experiments, our GAP trained on
a set of 3270 pixels reaches a better accuracy than the neural
network method trained on 2.1 million pixels.

Index Terms— Rivers, Remote Sensing, Surface Water
Detection, Graph Learning, Active Learning

1. INTRODUCTION

Surface water dynamics are critical to climate, flood monitor-
ing and mitigation, freshwater resource management, water
quality analyses, and geomorphology [1, 2, 3]. The impor-
tance of automated surface water detection in remote sensing
is highlighted by the publication of global datasets or pre-
trained surface water models, such as the Global Surface Wa-
ter dataset [4], Surface Water Extent product [5], and Deep-
WaterMap [6], in combination with different classification
methods including support vector machine (SVM), random
forest (RF), and convolutional neural networks (CNN).

Beyond just surface water, some river studies require
mapping of in-channel sediment to identify their so-called
“bankfull” state [7], which we define as the union of water
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and active (unvegetated) in-channel sediment bars [8]. We
build and employ our model on the small but high-quality,
manually-labeled RiverPIXELS dataset [9] consisting of la-
beled water and in-river, unvegetated sediment from multi-
spectral Landsat images.

Our main contribution is a graph-based active learning
pipeline (GAP) to identify water and sediment pixels in mul-
tispectral images. The inclusion of the sediment class has
largely been omitted in previous efforts or treated as an in-
dependent problem (e.g., [10]). Our model is based on the
RiverPIXELS dataset to classify water and in-channel sedi-
ment pixels in multispectral images. The first challenge of
this problem is the paucity of training data. The RiverPIX-
ELS dataset does not have enough images to train an accurate
CNN model to classify pixels. We address this insufficiency
by graph learning, which is good at classification tasks with
a low label rate [11]. The second challenge is designing an
efficient graph learning approach. The RiverPIXELS dataset
contains millions of labeled pixels. Using all available pixels
would result in extreme computational demand with long run-
times. We implement an active learning approach to condense
the training set by selecting representative pixels accounting
for approximately 0.1% of the total number of labeled pixels.
Compared to methods in other products, our GAP achieves
the highest accuracy with minimal training data (i.e., the num-
ber of labeled pixels). All our codes are available on GitHub1.

2. GRAPH ACTIVE LEARNING PIPELINE

The graph active learning pipeline (GAP) is summarized in
Figure 1). We extract a non-local means feature vector cor-
responding to a neighborhood of each pixel in a given image,
then construct a similarity graph G = (X,W ) based on the
feature vectors X = {x1, x2, . . . , xN}, where W is the edge
weight matrix generated according to KNN angular similar-
ity. With the ground-truth labels on a subset XL ⊂ X , we
apply graph Laplace learning [12] to predict the classification

1https://github.com/wispcarey/
SurfWater-Graph-Active-Learning-GAP-
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image, build a graph 
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for each image. 

Non-Local Means 
Feature Extraction:
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for each image. 

Fig. 1. The flowchart of our GAP: 1. (Red Boxes) Apply the non-local means method to extract feature vectors. 2. (Yellow Box) Condense
the labeled feature vector set into a smaller representative set (RepSet) through active learning. 3. (Cyan Box) Build a graph based on the
union of the RepSet and the unlabeled feature set. Then, apply graph learning approaches to predict labels for unlabeled feature vectors.

of the unlabeled nodes. Active learning approaches are ap-
plied to select the labeled set XL based on the Model-Change
(MC) acquisition function A : X − XL → R [13, 14]. A
similar method for an image segmentation task is introduced
in [15].

The first step to classifying pixels is to generate a feature
vector for each pixel. For pixel i, consider a (2k+1)×(2k+1)
neighborhood patch centered at pixel i (for boundary pixels,
use the reflection padding). Inspired by the non-local means
method [16], we use the flattened Gaussian weighted neigh-
borhood patch as the non-local means feature vector [15] of
pixel i. Then we extract the non-local means feature vector
for each image in the training image set I and select a subset
of labeled feature vectors as our training set.

Selecting a reasonable XL is tricky. Each image in River-
PIXELS is of the size 256 × 256, and the whole dataset in-
cludes millions of labeled pixels. It is thus inefficient to build
a graph using all of the labeled pixels. Instead, we apply
an active learning approach to select XL = R, where R is
a subset of representative labeled feature vectors, called the
representative set (RepSet). We find a representative set Rj

for each image Ij ∈ I and combine them together to obtain
R = ∪ln

i=1Ri. With the following four steps (Algorithm 1),
we determine the representative set for a certain image Ii ∈ I:
1. Preprocess: Apply the non-local means method to get the
feature set Xi = {xi

j} of image Ii.

2. Initialization: Initialize the representative set R0
i by ran-

domly selecting the same number of feature vectors of each
class from the feature set Xi. This initialization requires all
ground-truth labels of feature vectors in Xi and gives a class-
balanced initial R0

i .

Algorithm 1 Create the Representative Set
INPUT: Image set I = {I1, I2, . . . , Il}.
OUTPUT: Representative setR of the training image set I.
R← ∅; i← 1
FOR i = 1 to l, DO:

Preprocess image Ii to construct the feature vector of each
pixel

Initialize the representative set R0
i for image Ii

Active learning loop until Termination to obtain final Ri

R← R∪Ri

Algorithm 2 Active learning loop
INPUT: The initialized representative set R0 and feature vector set
X .
OUTPUT: The representative set R of the feature vector set X .
Build a graph G on R0 ∪X; t← 0
WHILE terminal condition is NOT triggered:

Apply Laplace learning on G with labels of Rt

Get the predicted labels of X
Calculate the acquisition function A(xk), ∀xk ∈ X \R0

k∗ ← argmaxxk∈X\R0 A(xk)

Rt+1 ← Rt ∪ {xk∗}; t← t+ 1
R← Rt

3. Active learning loop: Using active learning approaches,
add feature vectors from Xi and corresponding labels one by
one to the representative set (Algorithm 2).
4. Termination: Stop the active learning loop when a certain
termination condition is satisfied. The accuracy-based termi-
nal condition is applied. In iteration t of the active learning
loop step for image Ii, we apply Laplace learning based on la-
bels of the current representative set Rt

i to predict other nodes



Xi − Rt
i . Denote the prediction accuracy on Xi − Rt

i by
at. Given a positive integer Kmax and a positive real number
ϵ > 0, the active learning loop terminates if |at − at−1| <
ϵ or t > Kmax.

In summary, we extract non-local means feature vectors
for the training images, then apply the active learning method
to condense them into a small RepSet R. For each test image
Ĩi (considered unlabeled), we combine its extracted feature
vector set X̃i with R to build a graph. Finally, we apply graph
Laplace learning to predict labels on X̃i. This node classifi-
cation gives the segmentation of image Ĩi.

3. EXPERIMENTS AND RESULTS

We choose five rivers from the RiverPIXELS dataset: the
Kolyma, Yana, Waitaki, Colville, and Ucayali Rivers. Our
pipeline is trained on a small subset of pixels chosen from
the first four rivers, while the performance of different meth-
ods is tested on the remaining pixels of all five rivers. There
are 42 images belonging to the first four river regions, while
the Ucayali River includes 54 images. We randomly sample
75% of the labeled data (32 images) for each region as set I
from which we develop the smaller training set (RepSet) R
and use the remaining 25% (10 images) as the test set Ĩ. In
addition, we employ an extra test set Ĩex formed by 54 images
of the Ucayali river. Of note is that the Ucayali river is in the
tropical Amazonian region, while the other four are within
temperate or arctic regions, creating an additional challenge
for the method.

Model performances are evaluated using metrics of the
Boundary Accuracy and Overall Accuracy. We define a
pixel’s boundary distance DB as the minimal distance to a
pixel with a different ground-truth label. The Boundary Ac-
curacy BA(d) is defined as the accuracy on pixels with a
boundary distance DB ≤ d. The Overall Accuracy (OA) is
the accuracy on all pixels. BA is more indicative of the model
performance than OA since a naive classifier that classifies all
pixels into the land will have an OA of around 80%.

We compare the classification performance of our GAP to
DeepWaterMap (DWM) [6], support vector machine (SVM)
[17] and random forest (RF) [18] models. For our GAP, we
extract 7×7 non-local means features of pixels in the training
image set. The original extracted feature set X ⊂ R294 has
over 2 million feature vectors from the training set consisting
of 32 labeled images. DWM only provides the classification
of water and land pixels, while RiverPIXELS images include
water, bare sediment, and land. We provide two approaches to
compare the performance between other methods and DWM.
The first approach is to retrain DeepWaterMap (DWM R).
We train a new neural network with the same structure of
DWM on our training set with 32 labeled images and labels of
water, sediment, and land. The second approach is to modify
labels. Inspection of the training set of the original DeepWa-
terMap (DWM O) shows that nearly all sediment pixels are

labeled as land. We modify the labels of our training set and
the ground-truth labels of our test set by changing sediment
labels to land labels. Each method uses a different amount
of training data chosen to optimize the performance of each
method. For SVM and RF, we use a training set named T-
NLM consisting of 42.6K labeled non-local means feature
vectors randomly sampled and balanced in each class. The
retrained DWM (DWM R) is trained on I while the original
DWM (DWM O) is trained on around 100K labeled images.

Table 1 shows our experiment results, including the train-
ing and test set information and the BA(3), BA(10), and OA
accuracy metrics under both the retrained DWM method and
the modified label (Sed→Land). Note that our GAP method is
trained on the smallest training set yet has the highest bound-
ary accuracies, BA(3) and BA(10), as well as the highest over-
all accuracy on both the test set Ĩ and the extra test set Ĩex.
Note that our GAP method still performs the best across dif-
ferent regions (extra test set). Figure 2 displays results for
a sampled image from the Ucayali river that includes cloud
cover.

4. CONCLUSION

We develop a graph active learning pipeline (GAP) to clas-
sify pixels into the land, water, and bare sediment classes
from the RiverPIXELS dataset. GAP outperforms the clas-
sical methods of support vector machine and random forest,
and a cutting-edge CNN approach (DeepWaterMap) trained
on a dataset hundreds of times larger than RiverPIXELS. With
the help of active learning techniques, GAP can be trained on
much smaller datasets than other methods. Furthermore, GAP
demonstrates superior performance on images of rivers in dif-
ferent environments relative to other approaches. Our work
demonstrates how graph-based active learning techniques can
provide efficient labeling of and greater accuracy in detecting
surface water and in-river sediment using significantly fewer
training data than classic and deep approaches.
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