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ABSTRACT

A Random Forest (RF) regression-tree method to denive high-
resolution (60 m) surface soil moisture maps is proposed in
this study. The developed methodology integrates multi-
source synergies by incorporating information from the
visible, near-infrared until short-wave infrared spectrum
(Sentinel-2), reanalysis data (ERAS5-Land) and terrain
information (SRTM), using exclusively open access data.
The analysis focuses on the central part of the Iberian
Peninsula and covers a four-year period (2018-2021). The
resulting high-resolution soil moisture maps exhibit greater
spatial heterogeneity compared to the ESA Climate Change
Initiative (CCI) soil moisture, which was used as a reference
in the training of the RF model. These maps have been
evaluated using in sifu soll moisture measurements from the
REMEDHUS network, and show good agreement in terms of
Pearson's correlation (0.83). and uRMSE (0.028 m®m™),
demonstrating the method’s significant potential for deriving
high-resolution soil moisture information.

Index Terms— Soil moisture, random forest,
multispectral instrument, Sentinel-2, ESA CCL

1. INTRODUCTION

In the current context of climate change, extreme weather
events are becoming more frequent and understanding Soil
Moisture (SM) dynamics is of paramount mmportance.
Microwave remote sensing, including passive and active
acquisition techniques, has enabled the estimation of SM
from a regional to a global scale [1-3]. Microwave
radiometers exhibit a high radiometric sensitivity (SM
accuracy ~0.04 m¥/m?) and frequent revisit rates (1-3 days).
However, therr spatial resolutions are limited to tens of
kilometers due to physical and technical constraints, such as
antenna size. On the other hand, microwave radars offer a
spatial resolution n the range of a few meters. Nevertheless,

their backscatter measurements may be more easily
influenced by vegetation canopy and soil roughness, and are
limited to a temporal resolution of about a week or longer.

An increasing number of applications requiring high
spatial accuracy (< 1 km) has spurred the development of
pixel disaggregation techmques aimed at enhancing the
spatial resolution of the traditional radar/radiometer-based
SM maps [4-6]. Currently, the explosive growth of multi-
sensor and multi-resolution BEarth Observation (EO) data,
coupled with the significant advancements in statistical
learning, has led to the development of a plethora of Machine
Learming (ML) downscaling approaches [7-9].

ML algorithms have the capability to leverage
heterogeneous information and identify complex nonlinear
relationships directly and only from data. Nevertheless, their
implementation for high-resolution SM estimation requires
careful consideration of several key factors. First, a large
number of samples to draw accurate predictions and
generalize effectively is needed. Second, it is essential to
identify the most relevant variables that mfluence SM and
discard those with little impact. reducing noise 1n the data.
Feature selection techniques can be employed. Third, ML
algorithms can be categorized in supervised and
unsupervised, depending on the presence of labeled training
data. Among the supervised algorithms, regression-trees
methods have demonstrated their robustness in previous SM
downscaling studies [10], [11], along with the utilization of
cross-validation techniques to prevent overfitting. Due to all
aforementioned reasons, this study proposes utilizing the
Random Forest (RF) regression-tree method [12] for
estimating SM at a spatial resolution of 60 m.

2. STUDY AREA & DATA DESCRIPTION

The selected study region corresponds to the central part of
the Iberian Peninsula, extending longitudinally from 7.2°W
to 3.5°W, and latitudinally from 38.9°N to 42.5°N (Fig. 1a).
It 1s characterized by a Mediterranean-continental and
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Figure 1. a) Sentinel-2 true color image (with gain and gamma corrections) of the study region, utilizing all available samples
from August 2019. b) Comparison between the CCI and the predicted SM (both at 0.25°), using exclusively testing data from
2018 to 2021 The statistics R?, MAE and RMSE are included. c) Error obtained between the CCI and the predicted SM. using
data from 2018 to 2021. The training (blue) and testing (green) phases are depicted. The mean and the std are included for both.

mountamous climate, The study period spans from January
2018 to December 2021. The proposed approach utilizes the
following open access datasets (Table 1)

1) Daily ERA5-Land [13] Skin Temperature (SkT) at 12:00
UTC, ata 9 km grid.

2) Sentinel-2 [14] images captured by its MultiSpectral
Instrument (MSI), including 11 bands covering the
visible and near-infrared to the short-wave infrared
spectrum (excluding bands 1 and 10) and 10 vegetation
and soil indices, at 10/20/60 m resolutions, The indices
used are: the Normalized Difference Vegetation Index
(NDVT), the Normalized Difference Red Edge Index
(NDRE). the Enhanced Vegetation Index (EVI), the
Green Normalized Difference Vegetation Index
(GNDVI), the Soil Adjusted Vegetation Index (SAVI),
the Normalized Difference Moisture Index (NDMI), the
Moisture Stress Index (MSI), the Normalized Burned
Ratio Index (NBRI), the Bare Soil Index (BSI), and the
Normalized Difference Water Index (NDWI). Sentinel-
2 has a revisit frequency of 5 days considering the
combined constellation. Due to its revisit period and the
potential masking of information by atmospheric effects.
particularly in the visible range, datasets derved from
Sentinel-2 are the most limiting variables, in terms of
spatio-temporal coverage, among all the predictors used
n the ML algorithm.

3) Datasets that describe the terrain features, 1.e., the Digital
Elevation Model (DEM) from the Shuttle Radar
Topography Mission (SRTM) [15], and the slope
calculated from the DEM.

4) Daily Climate Change Initiative (CCI) SM[13] dataat a
spatial resolution of 0.25° derived from the combination
of active and passive microwave observations,

5) Daily average of the SM data at the topsoil 5 cm from the
Soil Moisture Measurements Stations Network of the
University of Salamanca (REMEDHUS) [16], located in

the central part of the Duero Basin, i Spain, and
consisting of 19 stations (available within the study
period) equipped with Hydra Probes, and 4
meteorological stations,

Table 1. Summary of the variables used in this study.

Source Variable Resolution  Frequency
Senfinel.2 11 reflectances 10/20/60 m 5 days
10 indices 10/20 m 5 days
ERAS5-Land  Skin temperature 9 km daily
: DEM 30m Static
RN Slope 30m Static
CCI Soil moisture -25km daily
REMEDHUS Soil moisture in situ hourly

3. METHODOLOGY

3.1. Model implementation

The procedure conducted to estimate SM at a 60 m spatial
resolution 18 summarized as follows:

1)

3)

Preprocess the Sentinel-2 images by filtering out
defective pixels, water-covered areas and reglons
affected by clouds, This information is then aggregated
to a regular 60 m grid.

Aggregate all the predictors (Sentinel-2 data, ERAS-
Land SkT, and terrain data) to the resolution of the target
variable (0.25” i our case) by employing the median.
Apply the RF algorithm at low resolution (0.25%) to
establish the relationship between the predictors and the
target variable (CCI SM). The data are randomly divided
into training (75%) and testing (25%) subsets. The
‘RandomForestRegressor’ class, available within the
‘scikit-learn’ open-source ML hibrary for Python [17], 18
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Figure 2. a) CCI SM map on a 0.25° grid and b)
estimated SM at 60 m, both for June 1%, 2019,

used to build a model for predicting SM. Hyperparameter
tuning of the R¥ class is performed using a k-fold (k=5)
cross-validation technique.

4) Generate 60 m SM maps using all the predictors at high
resolution — Sentinel-2-related data (reflectances and
indices) are already at 60 m, the ERAS5-Land SkT is
linearly interpolated to the 60 m, grid and the terrain data
1s aggregated from 30 m to 60 m — using the regression
model obtained in step 3.

3.2. Temporal validation of the 60 m SM

The ongimal CCI SM at 0.25° and the resulting 60 m SM were
compared with the in sift SM measurements provided by the
stations of REMEDHUS, First, the daily average of the most
representative stations (which are F11, H13, J12, 114, K10,
M9 and O7 according to [11]) was obtained. The same
methodology was applied to calculate the daily average of the
CCI SM and the 60 m pixels containing these seven stations.
A statistical analysis was then conducted using an equal
number of samples.

4. RESULTS

The analysis reveals that the seven most significant predictors
(and their contribution scores) during the ML training are: the
skin temperature (47.73%); the month of the year (12.24%);
the Short-Wave InfraRed (SWIR) band 11 (6.6%); the DEM
(6.2%); the slope (3.23%); the SWIR band 12 (2.1%); and the
BSI (1.8%). Fig. 1b illustrates the relationship between the
CCI 8M (0.25%) and the predicted SM (0.25%), yielding an
explained variance score (R?) of 0.82, a Mean Absolute Error
(MAE) of 0.019 m*m~, and a Root Mean Square Error
(RMSE) of 0.026 m*m™. Fig. 1c displays the histogram of
the errors (Predicted SM minus CCI SM), demonstrating a
similar Gaussian pattern centered around zero m*-m™ for both
the tramning and the testing data, with a shghtly higher
standard deviation (std) for the testing data errors. Fig. 2
presents an example (June 1%, 2019) showing the original
CCI 8M (Fig 2a) and the estimated SM at high resolution
(Fig. 2b), where an increase in spatial heterogeneity can be
observed. Temporally, these two products were compared
with the i situ SM measurements provided by the
REMEDHUS network stations (Fig. 3). They exhibit good
agreement with the i sifu measurements, with slightly higher
correlation observed for the CCI SM product, but also
showing a greater bias. Both products have an unbiased Root
Mean Square Error (uURMSE) of 0.028 m* m, lower than the
nominal SM accuracy usually required in satellite missions
(0.04 m*m™).

5. CONCLUSIONS

This study mntroduces a RF technique to estimate high-
resolution SM maps, accounting for multi-source synergies.
In the specific implementation presented here, the skin
temperature (which has proved to be highly relevant in other
disaggregation techniques [4]), the month of the year, and the
Sentinel 2 SWIR band emerge as the most significant
predictors, surpassing other bands or indices (e.g.. NDVI or
NDRE). The initial results are promising, with an R? value of
0.82 between the CCI SM and the estimated SM (0.25°, Fig.
1b). The model successfully captures the complex spatial
heterogeneity of the terrain at 60 m resolution for the Iberian
Penmnsula.

The algorithm encounters some difficulties in predicting
rare extreme events (Fig. 2a: dark blue pixel, 42.3°N 6.3°W:
dark red pixel, 39.8°N 5.3°W) where SM is above ~0.3 m*m"
3 or below ~0.1 m*-m™~. This limitation is likely due to the
scarcity of samples within these ranges during the training
phase. One potential sohition could be to expand the study
area to include wetter and drier regions, such as the northern
and northwestern parts, as well as the southern region of
Spain, respectively.

The time series presented in Fig. 3 demonstrates that the
high-resolution estimated SM effectively captures dry-down
and rewetting events. However, there is a noticeable bias
(0.074 m*m?) compared to the in sifu measurements, which
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Figure 3. Compariscn between the orniginal CCI SM (green line), the estimated SM at 60 m (blue dots), and the in sifu

measurements (black line).

can be attributed to inherent biases present in the reference
data used for model training or differences in spatial
resolutions (in sitir vs. 60 m resolution). The time series also
reveals a limited number of samples for the 60 m estimated
SM, mamly due to the temporal synchronism required
between the Sentinel-2 data and the CCI SM target variable.
as well as clouds masking the optical information.
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