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ABSTRACT

Deep Neural Networks (DNNs) have been extensively uti-
lized in aerial detection. However, DNNs’ sensitivity and
vulnerability to maliciously elaborated adversarial examples
have progressively garnered attention. Recently, physical at-
tacks have gradually become a hot issue due to they are more
practical in the real world, which poses great threats to some
security-critical applications. In this paper, we take the first
attempt to perform physical attacks in contextual form against
aerial detection in the physical world. We propose an innova-
tive contextual attack method against aerial detection in real
scenarios, which achieves powerful attack performance and
transfers well between various aerial object detectors without
smearing or blocking the interested objects to hide. Based
on the findings that the targets’ contextual information plays
an important role in aerial detection by observing the detec-
tors’ attention maps, we propose to make full use of the con-
textual area of the interested targets to elaborate contextual
perturbations for the uncovered attacks in real scenarios. Ex-
tensive proportionally scaled experiments are conducted to
evaluate the effectiveness of the proposed contextual attack
method, which demonstrates the proposed method’s superior-
ity in both attack efficacy and physical practicality.

Index Terms— Adversarial examples, contextual pertur-
bations, physical attacks, aerial detection

1. INTRODUCTION

In recent years, deep learning technology based on Deep Neu-
ral Networks (DNNs) has made great breakthroughs in com-
puter vision, and natural language processing. Thus, DNNs
have been widely applied in business and industry, such as
mobile payment, autonomous driving, medical diagnosis, in-
telligent security, robotics, and other fields.

However, the widespread application of DNNs also buries
potential safety hazards. Szegedy et al. [1] first designed an
adversarial perturbation imperceptible to humans and added
it to clean images to generate adversarial examples, which
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can misguide DNNs make completely different wrong pre-
dictions. Such malicious behavior and maliciously designed
examples are named adversarial attacks and adversarial ex-
amples, respectively, and the attacked model is also called the
victim model. Since then, various deep learning tasks have
fallen under adversarial attacks, such as image classification,
object detection, spam detection, malware identification, nat-
ural language processing, deep reinforcement learning, etc.
All DNNs-based models show great sensitivity and vulnera-
bility in the face of adversarial examples.

Computer vision tasks, according to different attack do-
mains, can be divided into digital attacks and physical attacks.
Digital attacks refer to attack by tampering with the image
pixels in the digital domain after imaging, while physical at-
tacks refer to attack by tampering with the interested targets
before imaging. Digital attack methods can easily fool var-
ious deep learning models in the digital domain. Since the
generated digital perturbations typically cover the entire im-
age and are invisible to humans, making them uncapturable
by imaging devices. This problem drives more scholars to
delve into the adversarial attacks applicable to real scenarios.
Consequently, many physical attacks in patch form have been
proposed to deceive intelligent systems such as autonomous
driving [2], face recognition [3], and aerial detection [4] in
real-world scenarios.

In this work, we devote ourselves to conducting contex-
tual attacks (CA) against aerial detection in physical world
scenarios. The main contributions are summarized as follows:

• We propose a novel contextual attack against aerial de-
tection in physical scenarios, which achieves strong at-
tack efficacy in both white-box and black-box condi-
tions without smudging or blocking the targets to hide.

• We find that the targets’ context information plays a
key role in detection by observing their attention maps.
Thus we make full use of the contextual feature of the
interested targets to elaborate contextual perturbations.

• We evaluate the proposed contextual attack method
with two SOTA methods by performing proportionally
scaled experiments, demonstrating our method’s supe-
riority in both attack efficacy and physical robustness.
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Fig. 1: The illustration of the proposed contextual attack against aerial detection in physical scenarios.

2. METHODOLOGY

2.1. Problem Formulation

In this work, we aim to design contextual perturbations in
patch form for unblocked attacks in the physical world. Given
a clean example x, by attaching the contextual perturbations
on clean image x to generate adversarial example x∗. Tech-
nically, the adversarial example is formulated as follows:

x∗ = (1−MP ∗)� x+MP ∗ � P ∗, (1)

where � and P ∗ represent Hadamard product and contex-
tual perturbations, respectively. Perturbations’ mask MP ∗

is applied to properly attach contextual perturbations on the
interested targets of a benign example.

2.2. Overall Framework

The overall framework of the proposed contextual attack is
shown in Fig. 1. In the physical world, normal scenarios
are captured by various remote sensing devices, such as satel-
lites, aircraft, and drones. Then, various DNNs-based aerial
detectors are adopted to process massive aerial imagery. To
better understand the DNNs’ predictions, we use Grad-CAM
[5] to visualize the aerial detectors’ attention maps. It is ob-
served that the detectors also focus on the targets’ contextual
area beside the targets themselves. Based on the findings that
the targets’ contextual information plays an important role in
aerial detection by observing the aerial detectors’ attention
maps. Thus we propose to fully use the contextual area of the
interested targets to elaborate contextual perturbations for the
uncovered attacks in real scenarios. Finally, the elaborately
designed contextual perturbations are applied in the physical
world to hide targeted objects from being recognized.
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Fig. 2: Contextual perturbation design.

2.3. Contextual Attacks

Our proposed contextual attacks framework is mainly in-
spired by the following observations:

• Contextual features matters in aerial detection.

• Bigger contextual perturbations with stronger attack
performance.

• Closer distance between perturbations and targets with
stronger attack performance.

Therefore, to achieve powerful uncovered attacks in physical
scenarios, we propose to manipulate the contextual area of the
interested targets to elaborate contextual perturbations.

Specifically, we first extract the masks of the foreground
Mfg and background M bg of the targeted object T . Sec-
ondly, contextual perturbation’s foreground F and back-
ground B area are extracted from the interested target T and
updated perturbation P respectively. Thirdly, F and B are
combined to formulate the contextual perturbation. Finally,
repeat the above steps until the end of training. Mathemati-
cally, contextual perturbation is defined as:

P c = T �Mfg + P �M bg

= F +B
(2)



Table 1: Quantitative experimental results of white-box attacks in the physical world.

ADs PAs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 Avg

AD1

Clean 0.92 0.91 0.90 0.89 0.91 0.89 0.89 0.89 0.91 0.91 0.92 0.90 0.92 0.91 0.89 0.91 0.90 0.90 0.904
PA1 0.82 0.77 0.75 0.50 0.83 0.00 0.84 0.84 0.87 0.73 0.80 0.86 0.82 0.82 0.60 0.83 0.87 0.87 0.746
PA2 0.00 0.81 0.62 0.62 0.88 0.00 0.82 0.85 0.85 0.82 0.87 0.84 0.77 0.76 0.61 0.83 0.86 0.86 0.704
Ours 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

AD2

Clean 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.996
PA1 0.00 0.99 0.97 0.21 0.37 0.00 1.00 1.00 0.98 0.76 0.95 1.00 0.98 0.36 0.96 1.00 1.00 1.00 0.752
PA2 0.00 0.90 0.00 0.00 0.00 0.00 0.99 0.99 0.99 0.00 0.66 1.00 0.55 0.72 0.27 1.00 0.00 0.99 0.503
Ours 0.27 0.33 0.00 0.93 0.99 0.00 0.00 0.00 0.00 0.32 0.98 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.264

AD3

Clean 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.998
PA1 0.97 1.00 1.00 0.95 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.99 1.00 1.00 0.982
PA2 0.98 1.00 0.93 0.25 1.00 0.74 0.99 1.00 1.00 0.84 0.94 0.97 0.97 1.00 0.00 1.00 1.00 1.00 0.867
Ours 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.022

AD4

Clean 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.988
PA1 0.22 0.89 1.00 0.47 0.91 0.00 1.00 1.00 1.00 0.97 1.00 1.00 0.98 1.00 0.49 0.99 0.99 0.97 0.827
PA2 1.00 0.91 1.00 0.82 0.94 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.43 0.99 1.00 1.00 0.894
Ours 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

The best attack performance are highlighted in bold.

Table 2: Quantitative experimental results of black-box attacks in the physical world.

ADs PAs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 Avg

AD2
PA1 0.99 0.94 0.99 0.89 0.78 0.00 1.00 1.00 1.00 0.95 0.99 1.00 0.96 0.63 0.98 1.00 0.99 0.99 0.893
PA2 0.00 0.99 0.00 0.00 0.82 0.00 0.99 1.00 0.98 0.44 0.92 1.00 0.94 0.25 0.33 0.99 0.54 0.99 0.609
Ours 0.00 0.24 0.00 0.51 0.27 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.128

AD3
PA1 1.00 1.00 1.00 0.99 1.00 0.42 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.967
PA2 0.98 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.993
Ours 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.029

AD4
PA1 1.00 0.99 1.00 0.94 0.73 0.00 1.00 1.00 1.00 0.99 1.00 1.00 0.85 0.99 0.99 1.00 0.98 1.00 0.914
PA2 0.98 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.85 1.00 1.00 0.96 1.00 0.88 1.00 0.92 0.99 0.921
Ours 0.00 0.00 0.00 0.40 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.034

The best attack performance are highlighted in bold. The proxy model is YOLOv5 (AD1).

2.4. Loss Function

To fool detectors in physical scenarios, the loss function con-
sists of two components, adversary loss and smoothness loss.

Adversary loss: We use objectiveness scores of all
detected objects to optimize the contextual perturbations.
Therefore, the adversarial loss is written as:

Ladv =
1

n

n∑
i=1

Pi(obj), (3)

where Pi(obj) means the objectiveness score of ith detected
interested target , and n represents the number of detected
interested targets. The adversarial loss is adopted to gift the
contextual perturbations with attack efficacy during training.

Smoothness loss: Existing works demonstrate that per-
turbation’s smoothness is crucial in maintaining attack effi-
cacy during imaging. Since imaging devices can barely cap-
ture the value gap between adjacent pixels, total variation
(TV) [6] is adopted as the smoothness limitation of the gen-
erated adversarial perturbations. TV can be written as:

Ltv =
∑
i,j

√
(pi+1,j − pi,j)2 + (pi,j+1 − pi,j)2, (4)

where pi,j represents the pixel value of ith row, jth column of
the optimized adversarial perturbation.

Consequently, the total loss function is as follows:

L = Ladv + λ · Ltv, (5)

where λ is used to balance the two parts of the total loss.

3. EXPERIMENTS

3.1. Experimental Settings

In experiments, public datasets DOTA [7] and RSOD1 are
used to train aerial detectors (ADs) and contextual perturba-
tions, respectively. Moreover, we choose various object de-
tection methods to verify the attack effectiveness of the pro-
posed method, including YOLOv52 (AD1), Faster R-CNN
[8] (AD2), Swin Transformer [9] (AD3), FreeAnchor [10]
(AD4). Two SOTA physical attacks (PAs) are chosen for com-
parison, including the adversarial perturbations generated by
Thys et al. [11] (PA1) and APPA [4] (PA2).

1https://github.com/RSIA-LIESMARS-WHU/
RSOD-Dataset-

2https://github.com/ultralytics/yolov5

https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
https://github.com/ultralytics/yolov5
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Fig. 3: Qualitative attack performance in the physical world.

3.2. Experimental Results

The planes are chosen as the interested targets in the propor-
tionally scaled experiments. We use the detection confidence
scores of 18 plane models (P1-P18) to compare the physical
attack performance, i.e., the lower the confidence scores, the
better the attack performance.

The quantitative experimental results of white-box and
black-box attacks (YOLOv5 is selected as a proxy model
to train contextual perturbations) are shown in Table 1 and
Table 2 respectively. It is observed that our method shows
great superiority in both attack efficacy and transferability.
Specifically, our elaborated contextual perturbations can sig-
nificantly lower the average detection confidence of all aerial
detectors, from 0.904, 0.996, 0.998, 0.988 to 0.000, 0.264,
0.022, 0.000, far better than the comparison methods. More-
over, our method can drop the average detection confidence
from 0.893, 0.967, 0.914 to 0.128, 0.029, 0.034, even in
black-box settings. The qualitative experimental results are
shown in Fig 3. We can observe that the generated contex-
tual perturbations of our proposed contextual attack method
can easily blind various aerial detectors, even after digital-
physical domain transformation.

4. CONCLUSION

In this article, we aim to hide interested targets from being
detected by various aerial detectors without smearing targeted
objects. To achieve that, we propose a novel contextual attack
against aerial detection in physical world scenarios, which
fully uses the interested targets’ contextual features to elab-
orate contextual perturbations and achieves the best attack
performance in both white-box and black-box settings. Ex-
tensive experiments demonstrate the effectiveness and supe-
riority of our proposed contextual attack method.
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