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ABSTRACT 

 

A joint approach for estimating vertically continuous soil 

moisture profiles by combining P-band SAR polarimetry 

with soil hydrological modeling is proposed. The approach 

compares the decomposed soil scattering component from 

remotely sensed P-band SAR observations of NASA’s 

Airborne Microwave Observatory of Subcanopy and 

Subsurface (AirMOSS) mission with an ensemble of 

simulated counterparts based on the hydrological model 

HYDRUS-1D and the soil scattering model multi-layer small 

perturbation method (SPM). From the best fit between remote 

sensing and soil modeling, the most probable soil moisture 

profile can be retrieved. Estimated soil moisture profiles at 

individual monitoring stations across the U.S. are compared 

to in situ measurements, as well as the European ReAnalysis 

(ERA5) land and AirMOSS L4 products. Pearson’s 

coefficient of determination between estimated and auxiliary 

products prove the overall feasibility of the proposed method 

with respective 𝑅2 of 0.92, 0.95, and 0.87. 

 

 

Index Terms— SAR, polarimetry, soil moisture profile, 

AirMOSS, HYDRUS-1D, multi-layer SPM 

 

1. INTRODUCTION 

 

Soil moisture contributes to the characterization of the 

Earth’s weather and climate [1], influencing land-atmosphere 

exchanges [2]. Especially the vertical distribution and 

variability of the soil moisture with depth have direct impact 

on the land-atmosphere coupling (e.g., evapotranspiration) 

and the heat and water exchanges [3]. Microwave remote 

sensing proved to be a useful tool for estimating soil moisture 

at large spatio-temporal scales. Up to now, most soil moisture 

retrieval methods are able to estimate moisture from 

microwave observations near the soil surface (L-band) [4] or 

at the subsurface (P-band) [5]. These methods provide a 

single moisture value for the vertical integral from the soil 

surface until the penetration depth of the respective 

microwaves. However, in principle, the P-band radar 

backscatter time series are able to provide information on the 

soil moisture dynamics in time, space and depth. Thus, by 

combining remote sensing with hydrological modeling, a 

new method for estimating the soil moisture variability across 

the vertical soil column, i.e. the soil moisture profiles, is 

proposed in this research study. Specifically, remotely sensed 

soil information from P-band synthetic aperture radar (SAR) 

observations at high resolution are combined with 

approximate solutions for soil moisture variabilities from 

hydrological modeling. By doing so, the proposed method 

estimates soil moisture profiles with improved accuracy, 

enhancing already existing soil moisture profile products 

based on retrieval methods like simple polynomial shape 

fitting, e.g., [6]. 

 

2. DATA SOURCES 

 

In this study, fully polarimetric SAR observations at a 

center frequency of 430 MHz (P-band) of NASA’s Airborne 

Microwave Observatory of Subcanopy and Subsurface 

(AirMOSS) mission are employed [7]. The airborne mission 
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was conducted between 2012-2015 across multiple 

monitoring sites in North and Central America, all covering 

an area of ~100 × 25 km at ~90 m resolution [7]. The 

proposed approach is analyzed and validated at eight 

individual monitoring stations within six AirMOSS 

campaign sites across the continental U.S., enabling the 

investigation of variable climates, vegetation covers and soil 

conditions. Further, estimated soil moisture profiles are 

compared and validated with in situ measurements from the 

US Climate Reference Network (US-CRN) network [8], the 

European ReAnalysis (ERA5) land product from the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) [9], and the project AirMOSS L4 mission product 

[10]. Since all these validation and comparison products only 

provide moisture values at discrete soil depths (symbols in 

Fig. 1), their profiles are estimated by applying a polynomial 

function of 2nd degree combining the discrete values. 

 

3. METHOD 

 

The approach begins with decomposing polarimetric P-

band SAR observations from the AirMOSS campaign [7] into 

the individual scattering mechanisms (soil, dihedral, 

vegetation) by applying the revised hybrid decomposition 

method from [5]. In this way, the influence of vegetation-only 

or double-bounce scattering is eliminated from the total SAR 

signal and only the soil scattering component, represented by 

the data-based polarimetric scattering angle 𝛼𝑠
𝑆𝐴𝑅, is 

considered for soil moisture profile estimation. The reader is 

referred to [5] for more details on the hybrid decomposition 

method and the removal of the vegetation scattering 

components from the total SAR signal. 

Second, the HYDRUS-1D model [11] is used to simulate 

an ensemble of soil moisture profiles (number of layers fixed 

to 101) based on varying initial assumptions, e.g., the profile 

depth or the soil matrix potential. HYDRUS-1D computes the 

one-dimensional water flow in variably saturated soils by 

solving a modified version of the Richards’ equation [11]. 

Every simulated soil moisture profile is then used to model 

the corresponding backscatter coefficient 𝜎𝑃𝑄
𝑜  by employing 

the multi-layer small perturbation method (SPM), which 

simulates backscattering from multi-layered soils [12]. These 

modeled 𝜎𝑃𝑄
𝑜  are then used to calculate the model-based 

scattering angle 𝛼𝑠
𝑀𝑜𝑑𝑒𝑙  [13] for every simulated profile.  

Lastly, the best fit between observed 𝛼𝑠
𝑆𝐴𝑅 and simulated 

𝛼𝑠
𝑀𝑜𝑑𝑒𝑙  determines the final, most representative, continuous 

soil moisture profile. Sensitivity analyses showed that always 

the global minimum can be found (no multiple solutions). 

Further, the best fit deviates at least 1.75 % from the second 

best and higher best fits (one distinct solution). 

 

4. RESULTS 

 

Results are presented here exemplarily for the monitoring 

station Stillwater 2 W within the AirMOSS campaign site 

MOISST in Oklahoma, USA. This station is characterized by 

the landcover classes grassland or herbaceous, as well as a 

temperate climate with mild summers (Cfa) [14]. 

Fig. 1. Estimated soil moisture profiles for individual dates at AirMOSS monitoring station Stillwater 2 W, OK, USA, in comparison 

with auxiliary soil moistures products. R2 [-] is the correlation coefficient and F [-] is the Fréchet distance [15]. A: drying soil on 

10/21/2014, B: rewetted soil (after small rain event in the week before) on 07/16/2013, C: rewetted soil (after three consecutive rain 

days before acquisition) on 06/17/2013. 



 

In Fig. 1 three individual profile plots (A, B, C) represent 

typically occurring soil moisture profiles (shape & level) at 

individual dates, depending on prior precipitation events and 

soil conditions. The estimated soil moisture profiles are 

compared with in situ measurements from US-CRN, as well 

as the ERA5-land and the AirMOSS L4 products. 

The estimated profile in Fig. 1A shows increasing values 

with increasing soil depth since no precipitation occurred at 

least more than seven days prior to the recording date and 

hence, the soil constantly dries out from the soil surface 

towards deeper layers. Fig. 1B shows a typical soil moisture 

profile when smaller precipitation events occur prior to the 

recording date (here in total 31.9 mm in the week before). The 

soil moisture values decrease with increasing soil depth since 

the water infiltrates from top downwards to deeper layers. 

Thereby, the depth of the inflection point varies depending on 

infiltration rate and time since rain pulse. Finally, Fig. 1C 

shows almost no variability with depth in the estimated soil 

moisture profile. Here, the profile is almost static at 38.6 

vol.% since in total 66.5 mm of rain occurred within three 

consecutive days prior to the recording date (saturated 

conditions).  

Analyzing all results at this site for all campaign dates 

between 2013 to 2015 (in total 19), correlation coefficients 

between estimates and in situ values of 0.92, ERA5-land 

values of 0.95, and AirMOSS L4 values of 0.87 are achieved 

(Fig. 2). The higher 𝑅2 between estimates and ERA5-land 

values can be explained by the smaller value range compared 

to in situ observations as indicated by the probability density 

functions (PDFs) at the edges of to the scatterplot. The 

Fréchet distance, accounting not only for the difference in 

absolute values but also the profile shape similarity, is highest 

with AirMOSS L4 values (𝐹 = 0.14), compared to in situ and 

ERA5-land values (both with 𝐹 = 0.1), showing lowest 

similarity in absolute values and profile shapes. This is 

because AirMOSS L4 values show the smallest value range 

of all ranging from 0.18 to 0.26 and with the PDF peaking at 

0.22. In contrast, estimated moisture values cover a much 

broader value range between 0.17 and 0.43 with highest 

density of values at 0.32, similar to in situ measurements 

(between 0.12 and 0.45, and highest density at 0.27). ERA5-

land shows the second smallest value range varying between 

0.18 and 0.39, with the PDF peaking between the one of in 

situ values and AirMOSS L4 values at 0.24. 

Overall, results show that retrieved estimates fit most to 

in situ measured soil moistures with high 𝑅2, lowest 𝐹 and 

the regression line closest to the 1:1 line (Fig. 2). 

 

5. SUMMARY AND CONCLUSION 

 

In this study, a combined approach of remote sensing and 

soil hydrological modeling is presented to estimate vertically 

continuous soil moisture profiles. The approach is tested 

based on the polarimetric P-band SAR observations of the 

AirMOSS mission [7] and the models HYDRUS-1D [11] for 

soil hydrology as well as the multi-layer SPM [12] for soil 

scattering. The comparison of remote sensing and soil 

modeling is performed on the level of the soil scattering 

angle. The main reason, among others, is that this way only 

soil scattering has to be simulated since vegetation effects on 

the P-band SAR observations are removed before the 

comparison. Further, a variable model set-up is used with 

varying initial assumptions on certain input parameters in 

order to diminish potential model errors. Here, actual 

remotely sensed SAR observations constrain the selection of 

the most appropriate hydrological model simulation. 

This combined approach provides the ability of 

estimating vertically continuous and physically more realistic 

soil moisture profiles. Other approaches mainly apply a 

polynomial fitting of certain degree to few known moisture 

measurements at discrete soil depths to obtain a vertical 

moisture profile, which is, however, physically unrealistic 

due to profound simplifications of reality. Further, in situ soil 

moisture sensors need a certain measuring volume of soil to 

provide realistic measurements. Hence, most in situ 

measurements are only available below 5 cm soil depth. Here, 

the proposed approach can provide information on the soil 

moisture variability and discontinuity also in the upper part 

of the soil, from the soil surface until 30 cm depth 

(approximate penetration depth of P-band SAR 

observations). 

Exemplarily results at the monitoring site Stillwater 2 W 

in Oklahoma, USA, show high correlations and low Fréchet 

distances between estimated soil moisture profiles and 

auxiliary data (in situ measurements, ERA5-land reanalysis 

& AirMOSS L4 mission products). Further, since the soil 

Fig. 2. Comparison of estimated soil moisture values between 2013-

2015 for soil depths from 0 cm to -30 cm with auxiliary soil 

moistures products at the monitoring station Stillwater 2 W, OK, 

USA (36°7.05´N, 97°5.7´W).  R2 [-] is the correlation coefficient 

and F [-] is the Fréchet distance [15]. 



 

moisture profile shapes constantly coincide with actual 

hydrological circumstances (e.g., climate regimes, 

precipitation), the feasibility of the proposed method is 

confirmed. In the end, this method enables the potential to 

indicate soil moisture variability across the vertical soil 

column and improve, e.g., the forecast skill of weather and 

climate models. 
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